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Chapter 0

Introduction and Preliminaries

0.1 Abstract

The complex hypersurfaces of a complex projective space IPn which are of least complexity

(apart from the projective subspaces, whose geometry is known completely) are those which are

determined by a non-degenerate quadratic equation, the complex quadrics. From the algebraic

point of view, all complex quadrics are equivalent. However, if one regards IPn as a Riemannian

manifold (with the Fubini-Study metric), it turns out that only certain complex quadrics are

adapted to the Riemannian metric of IPn in the sense that they are symmetric submanifolds

of IPn . These quadrics are also singled out by the fact that they are (again apart from the

projective subspaces) the only complex hypersurfaces in IPn which are Einstein manifolds (see

Smyth, [Smy67]). In the sequel the term “complex quadric” always refers to these adapted

complex quadrics.

While the algebraic behaviour of complex quadrics Q is well-known, there still remains a lot

to be said about their intrinsic and extrinsic Riemannian geometry; the present dissertation

provides a contribution to this subject. Specifically, the following results are obtained:

– The classification of the totally geodesic submanifolds of Q .

– The investigation of certain congruence families of totally geodesic submanifolds in Q ;

these families are equipped with the structure of a naturally reductive homogeneous space

in a general setting, and it is investigated in which cases this structure is induced by a

symmetric structure.

– It is shown that the set of the k-dimensional “subquadrics” contained in Q (which are

all isometric to one another) is composed of a one-parameter-series of congruence classes;

moreover the extrinsic geometry of these subquadrics is studied.

– It is well known that the following isomorphies hold between complex quadrics of low

dimension and members of other series of Riemannian symmetric spaces:

Q1 ∼= S2, Q2 ∼= IP1×IP1, Q3 ∼= Sp(2)/U(2), Q4 ∼= G2(C
4) and Q6 ∼= SO(8)/U(4) .

These isomorphisms are constructed explicitly in a rather geometric way.

9



10 Chapter 0. Introduction and Preliminaries

In what follows I describe the strategies involved in obtaining these results, and discuss the

results in more detail.

In the study of the geometry of any Riemannian manifold its curvature tensor plays a significant

role. This is, for example, apparent from the fact that, at least in the case of the curvature tensor

being parallel, it already contains all information about the local structure of the Riemannian

manifold concerned (as the local version of the theorem of Cartan/Ambrose/Hicks shows). An-

other reason is that the curvature tensor induces an additional structure on the tangent spaces

of the manifold, which is of interest in particular for the submanifold geometry of the manifold.

For this reason, the algebraic structure of the curvature tensor is of importance for the study of

the geometry of the manifold.

This idea is carried out for the complex quadric in the paper [Rec95] by Prof. H. Reckziegel,

which was the starting point for the present dissertation. The chapters 1–3 are (with the

exception of Section 3.4) an extended, more detailed exposition of the cited paper.

The following concept, which was introduced in [Rec95], is fundamental throughout the disser-

tation: Let V be a unitary space and A a conjugation1 on V . Following [Rec95], we then

call the “circle of conjugations” A := {λA |λ ∈ S1 } a CQ-structure and the pair (V,A) a

CQ-space.

There are two causes for the great importance of the concept of a CQ-structure for the study

of complex quadrics. One cause is that the set of CQ-structures on a unitary space V is in

one-to-one correspondence with the set of complex quadrics in IP(V) which are adapted to the

metric of IP(V) (in the sense explained above).

The second, even more fundamental cause is derived from the following result, which is already

of central importance in [Rec95]: For a complex quadric Q ⊂ IP(V) and p ∈ Q we denote by

⊥1
pQ the set of unit normal vectors to Q at p , and for η ∈⊥1

pQ by Aη the shape operator

of Q with respect to η . Then the set A(Q, p) := {Aη | η ∈⊥1
pQ } is a CQ-structure on the

tangent space TpQ . As the Gauss equation of second order shows, the curvature tensor of Q

at p can be described via this CQ-structure A(Q, p) (and the Riemannian metric and complex

structure of Q ). Therefore the CQ-spaces (TpQ,A(Q, p))p∈Q describe the local information on

the complex quadric in totality, and thus it appears to be reasonable to regard the Riemannian

metric of Q , the complex structure of Q and the family (A(Q, p))p∈Q of CQ-structures as the

“fundamental geometric objects” of the complex quadric Q . This point of view had a formative

influence on the present dissertation.

Two CQ-spaces of the same dimension are isomorphic to each other. For this reason much

information about the two situations described above can be obtained by the abstract study

of CQ-spaces. Such studies are carried out in Chapter 2 of the dissertation. Two of the facts

obtained there are of particular importance for the further use of CQ-spaces:

1Suppose that V is a unitary space, whose complex structure we denote by J : V → V, v 7→ i · v and whose

complex inner product we denote by 〈·, ·〉C . Then an IR-linear map A : V → V is called a conjugation on V , if

it is self-adjoint and orthogonal with respect to the real inner product Re(〈·, ·〉C) , and moreover A ◦ J = −J ◦A

holds.



0.1. Abstract 11

(1) The group Aut(A) of the CQ-automorphisms of V (i.e. of those unitary transformations

B : V → V for which B ◦ A ◦ B−1 ∈ A holds for every A ∈ A ) does not act transitively on

the unit sphere S(V) (thus we see that in a CQ-space, unlike in a unitary space, not all unit

vectors are geometrically equivalent). More specifically, there exists a surjective, continuous

function ϕA : S(V) → [0, π4 ] , which is submersive on ϕ−1
A

(]0, π4 [) , so that the orbits of the

action of Aut(A) on S(V) are exactly the niveau surfaces of ϕA . This fact is already found in

[Rec95], however the simple description of ϕA via the equation 2 cos(ϕA(v)) = |〈v,Av〉C| with

an arbitrary A ∈ A (see Theorem 2.28(a)) is new.

(2) As it has already been said above, the curvature tensor of a complex quadric Q at p ∈ Q

can be described via the quantities of the CQ-space (TpQ,A(Q, p)) alone. For this reason, one

can introduce a tensor which corresponds to the curvature tensor of Q on any CQ-space (V,A) ;

we call this tensor the curvature tensor R of the CQ-space. We describe the eigenspaces and

eigenvalues of the Jacobi operator R( · , w)w : V → V and the R-flat subspaces of V . These

data, which are already found in [Rec95], are of great importance for the study of the complex

quadric as a symmetric space.

In Chapter 3, the results about CQ-spaces are applied to complex quadrics. Section 3.1 shows

in what way CQ-(anti-)isomorphisms of a CQ-space (V,A) give rise to (anti-)holomorphic

isometries of the complex quadric Q(A) ⊂ IP(V) defined by the CQ-structure A . The ba-

sic result already found in [Rec95] is here enhanced by a description of the “mobility” of

bases in TpQ in terms of the CQ-theory (Theorem 3.5). Therefrom also the well-known

fact that an m-dimensional complex quadric is a Hermitian symmetric space isomorphic to

SO(m+ 2)/(SO(2) × SO(m)) follows; moreover the splitting o(m+ 2) = k ⊕ m induced by the

symmetric structure is described explicitly. The information concerning the curvature tensor

from Sections 2.7 and 2.8 can now be interpreted as a description of the Cartan subalgebras,

the roots and the root spaces of the symmetric space Q ; this viewpoint is here used in a much

stronger way than in [Rec95]. Whereas the structure of the root system of Q is of course well-

known, the present explicit description of the Cartan subalgebras and the root spaces in terms

of the CQ-space (TpQ,A(Q, p)) alone (without use of any “artificial coordinates”) cannot be

found elsewhere, and is fundamental for the following investigations.

The results described up to this point constitute the fundament of the present investigation of

the geometry of complex quadrics.

As a first application, the isometries of the complex quadric Q are classified in Section 3.3.

Although the main result on this topic, that (a) every (anti-)holomorphic isometry f : Q → Q

is induced by a CQ-(anti-)automorphism, and that (b) for dimQ 6= 2 , every isometry f : Q→ Q

is either holomorphic or anti-holomorphic (Theorem 3.23), is already found in [Rec95], I can here

provide a far shorter proof based on the fact that for every isometry f : Q→ Q and every p ∈ Q

we have ϕA(Q,f(p)) ◦ (f∗|S(TpQ)) = ϕA(Q,p) (as follows from the equivariance of the curvature

operator under f∗ ).

The subject of the Chapters 4 and 5 is the classification of the totally geodesic submanifolds of

the complex quadric Q .
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Already Chen and Nagano were concerned with the classification of the totally geodesic sub-

manifolds in symmetric spaces in their papers [CN77] and [CN78]. The paper [CN77] gives a

classification of the totally geodesic submanifolds of the complex quadric by “ad hoc methods”.

However, it contains several faults, which cause two types of totally geodesic submanifolds to be

missed. Also in other regards, not all arguments in [CN77] are convincing. — While the paper

[CN77] studied the complex quadric exclusively, the (M+,M−)-method introduced in [CN78]

pertains to finding totally geodesic submanifolds in general Riemannian symmetric spaces of

compact type. However, it is only a necessary criterion for the existence of totally geodesic

embeddings of one symmetric space into another. Thus the (M+,M−)-method provides neither

proofs for the existence of totally geodesic submanifolds in a symmetric space nor information

about their position. Therefore the cited papers do not give a satisfactory investigation of the

totally geodesic submanifolds of the complex quadric, and I also do not know of a treatment of

the problem elsewhere.

For a more detailed discussion of the papers [CN77] and [CN78], and of the older paper [CL75]

by Chen and Lue concerning the real-2-dimensional totally geodesic submanifolds of Q , refer

to Remark 4.13.

In the classification of the totally geodesic submanifolds of Q performed in this dissertation, I

use neither the methods of [CN77] nor the (M+,M−)-method. Rather I proceed as follows: As

is well-known, the connected, complete, totally geodesic submanifolds of the symmetric space

Q are exactly its symmetric subspaces, and the symmetric subspaces of Q running through

some point p ∈ Q are in bijective correspondence with the curvature-invariant subspaces of the

tangent space TpQ . Therefore, the problem of classifying the totally geodesic submanifolds of

Q decomposes into two subproblems: (1) The classification of the curvature-invariant subspaces

of TpQ and (2) The description of the global isometry type and of the position in Q of the

totally geodesic submanifolds of Q corresponding to the curvature-invariant subspaces found in

the solution of the first subproblem.

The solution of subproblem (1) is based on the combination of the root space theory of symmetric

spaces with the specific description of the roots and root spaces of the complex quadric obtained

via the theory of CQ-spaces. First, in Section 4.2 I derive relations between the roots resp. root

spaces of a general symmetric space M of compact type and the roots resp. root spaces of

its symmetric subspaces. Via the explicit description of the roots and root spaces of Q one

obtains conditions for the possible position of curvature-invariant subspaces in TpQ from these

relations. These conditions permit a classification of the curvature-invariant subspaces, which

is carried out in Sections 4.3 and 4.4. The proof of the classification is simplified and structured

by the use of symmetry properties of the root systems; the use of these symmetry properties

has been suggested by Prof. J.-H. Eschenburg (Augsburg).

Subproblem (2) is tackled in Chapter 5: For every curvature-invariant subspace U ⊂ TpQ found

in Chapter 4 (with exception of one specific congruence type of 2-dimensional subspaces), a

totally geodesic, injective, isometric immersion into Q is described whose image runs tangential

to U . This completes the classification of the totally geodesic submanifolds of Q .
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In particular, we obtain the following totally geodesic submanifolds in an m-dimensional complex

quadric Q ⊂ IP(V) (for a complete list, see Theorem 5.1): (1) For every k < m there exist

totally geodesic submanifolds Q′ of Q which are isometric to a k-dimensional complex quadric.

They are “subquadrics” of Q in the sense that for each such Q′ there exists a complex-(k+1)-

dimensional projective subspace Λ ⊂ IP(V) so that Q′ is a complex quadric in Λ in the previous

sense. (2) For every k ≤ m
2 there exist complex-k-dimensional projective subspaces of IP(V)

which are entirely contained in Q and therefore totally geodesic submanifolds of Q . (3) For

m ≥ 3 there are totally geodesic submanifolds of Q which are isometric to a 2-sphere of radius
1
2

√
10 ; these submanifolds are neither complex nor totally real. Their diameter π

2

√
10 is strictly

larger than the diameter π√
2

of the ambient quadric Q .

The question arises whether there are other k-dimensional subquadrics of Q besides the totally

geodesic ones mentioned in (1). As I show in Chapter 6, this question is to be answered in

the positive for k ≤ m
2 − 1 . For these k there exist infinitely many congruence classes of k-

dimensional subquadrics of Q , the set of these congruence classes is parametrized by an “angle”

t ∈ [0, π4 ] (which is related strongly to the function ϕA : S(V) → [0, π4 ] ), and a subquadric Q′

of Q is a totally geodesic submanifold if and only if it belongs to the congruence class with

t = 0 . I also show that the inclusion Q′ ↪→ Q has parallel second fundamental form if and only

if Q′ belongs either to the congruence class with t = 0 or to the congruence class with t = π
4 .

The members of the latter congruence class are exactly those subquadrics of Q whose ambient

projective space Λ ⊂ IP(V) is entirely contained in Q .

If Q′ is a subquadric of Q belonging to the congruence class with the parameter t ∈ [0, π4 ] , then

this entire congruence class is by definition given by { f(Q′
t) | f ∈ I(Q) } , where I(Q) denotes

the isometry group of Q . In the general setting, where M is any Riemannian symmetric space

and N0 a submanifold of M , I call the set F(N0,M) := { f(N0) | f ∈ I(M) } the “family of

congruent submanifolds” or the “congruence family” induced by N0 in M . I carried out the

study of such congruence families, here found in Chapter 7, after Prof. M. Rapoport (Bonn)

indicated the investigation of the projective subspaces in a complex quadric found in [GH78],

p. 735f. to me. However, [GH78] is not concerned with the metric point of view, on which the

present study is focused. My results on this subject have now been published as [KR05].

In Section 7.1 I first show in a general setting how to equip congruence families with the structure

of a Riemannian manifold in such a way that it becomes a naturally reductive Riemannian

homogeneous space. The remainder of Chapter 7 is concerned with the study of specific examples

of congruence families. In Section 7.2 I study two examples in the complex projective space

IP(V) : the congruence family induced by a projective subspace and the congruence family

induced by a k-dimensional complex quadric. In Section 7.3 I study two examples in a complex

quadric Q ⊂ IP(V) : the congruence family induced by a totally geodesic subquadric, and

the congruence family induced by a projective subspace of dimension ≤ m
2 contained entirely

in Q . (The latter congruence family is the one considered in [GH78].) It turns out that in

some, but not all of the cases considered the reductive structure of the congruence family is

induced by a symmetric structure. For example, in the case of the congruence family F(IPk, Q)

induced by a k-dimensional projective subspace (with k ≤ m
2 ) contained in the quadric Q the

following result holds true (see Theorem 7.11): If 2k = m holds, then F(IPk, Q) has exactly
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two connected components, which can be equipped with the structure of a Hermitian symmetric

space isomorphic to SO(m + 2)/U(k + 1) in such a way that the symmetric structure induces

the original naturally reductive structure. On the other hand, if 2k < m holds, then F(IPk, Q)

is connected, and the naturally reductive structure of F(IPk, Q) is not induced by a symmetric

structure.

As was first noted by E. Cartan and as is well-known, the complex quadrics Qm of dimension

m ∈ {1, 2, 3, 4, 6} (and no others) are as Riemannian symmetric spaces isomorphic to members

of other series of Riemannian symmetric spaces (see also [Hel78], p. 519f.). It can be read off the

Dynkin diagrams of the irreducible symmetric spaces (see [Loo69], Theorem VII.3.9(a), p. 145

and Table 4 on p. 119) that the following isomorphies hold:

Q1 ∼= S2, Q2 ∼= IP1 × IP1, Q3 ∼= Sp(2)/U(2), Q4 ∼= G2(C
4) and Q6 ∼= SO(8)/U(4) .

(It follows from the fact that all the mentioned spaces are simply connected that the isomorphies

given are indeed global.) This consideration does not provide a method for the construction of

isomorphisms between the respective spaces. However, in the dissertation (Section 3.4 and Chap-

ter 8), I am successful in constructing these isomorphisms explicitly in a rather geometric way:

The Segre embedding gives rise to an isomorphism between Q2 and IP1 × IP1 ; in particular Q2

is (unlike the complex quadrics of every other dimension) reducible. — The Plücker embedding

provides an isomorphism between the complex Grassmannian G2(C
4) and a 4-dimensional com-

plex quadric Q(∗) ⊂ IP(
∧2C4) ; here the quadric Q(∗) is described by the Hodge star operator

∗ :
∧2C4 → ∧2C4 . — By restricting the mentioned isomorphism G2(C

4) → Q(∗) to a suitable,

totally geodesic Sp(2)-orbit in G2(C
4) , one obtains an isomorphism between the Hermitian

symmetric space Sp(2)/U(2) and a 3-dimensional, totally geodesic subquadric of Q(∗) . — Via

the theory of spin groups, their representations and the principle of triality I can construct an

isomorphism between Q6 and the Hermitian symmetric space SO(8)/U(4) . The latter space

has several geometric realizations. For example, it is isomorphic to each of the two connected

components of the congruence family F(IP3, Q6) of the 3-dimensional projective subspaces con-

tained in Q6 ; this fact is used in the construction of the isomorphism Q6 → SO(8)/U(4) . A

more well-known geometric realization of SO(8)/U(4) is as the space of orthogonal complex

structures on IR8 with a fixed orientation, and this realization can be used to establish the

mentioned isomorphism between SO(8)/U(4) and the connected components of F(IP3, Q6) .

It should be mentioned that we were first pointed to the existence of the isomorphy Q4 ∼=
G2(C

4) by Prof. M. Guest (Metropolitan University of Tokyo). The insights gained during the

construction of this isomorphy were very fruitful also for the general understanding of complex

quadrics.

The appendices contain mostly reproductive expositions of certain subjects which are of im-

portance in the dissertation. The sources on which they are based are mentioned here and in

the introduction of the respective appendix. Where appropriate we also give sources in the

individual theorems and proofs.

Appendix A describes the aspects of the theory of symmetric spaces which are of importance

here. For the point of view on the theory of symmetric spaces taken in Sections A.1, A.2 and
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A.3, a non-published script by Prof. H. Reckziegel has furthered my understanding greatly;

for the description of the root space theory for symmetric spaces in Section A.4, the script of a

lecture by Prof. G. Thorbergsson has been of help.

The subject of Appendix B is the theory of Clifford algebras, spin groups, their representations

and the principle of triality. These subjects play an important role in the construction of

the isomorphism between Q6 and the connected components of F(IP3, Q6) . The principal

sources here were the book [LM89] by Lawson/Michelsohn (for Clifford algebras, spin groups

and their representations), and the book [Che54] by Chevalley (for the principle of triality).

Moreover, the discussions with Prof. H. Reckziegel on these subjects, which also gave rise to

the script [Rec04], were very helpful.

0.2 Conventions and Notations

We describe the notations and conventions which are used throughout the dissertation.

Elementary objects.

symbol meaning

IN {1, 2, 3, . . . } (natural numbers)

IN0 IN ∪ {0}

ZZ ring of integers

δk` (k, ` ∈ ZZ) δk` = 1 for k = ` ; δk` = 0 for k 6= ` (Kronecker symbol)

Sn permutation group of {1, . . . , n}

sign(σ) (σ ∈ Sn) the signum of σ

Q field of rational numbers

IR field of real numbers

C field of complex numbers

Q×, IR×, C× Q \ {0}, IR \ {0}, C \ {0} (the multiplicative groups of these fields)

IR+, IR− { t ∈ IR | t > 0 }, { t ∈ IR | t < 0 }

i = (0, 1) ∈ C (the imaginary unit of C )

Re z, Im z (z ∈ C) the real resp. imaginary part of z

z (z ∈ C) = Re z − i Im z (the complex conjugate of z )

|z| (z ∈ C) absolute value of z

S1 = { z ∈ C | |z| = 1 } (the unit circle)

idM (M a set) the identity map M →M, p 7→ p

M ′ ↪→ M (M ′ ⊂M) the inclusion map M ′ →M, p 7→ p

g ◦ f (f : L →M, g : M → N) the composition map L→ N, p 7→ g(f(p))

Fix(f) (f : M →M) = { p ∈M | f(p) = p } (the fixed point set of f )

Fix(F) (F a set of maps M →M) =
T

f∈F
Fix(f)
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Linear spaces. We will consider finite-dimensional linear spaces over the fields IR and C .

Let V,W be linear spaces over IK ∈ {IR,C} ; let n be the dimension of V . In the case IK = C

we call an IR-linear map B : V → V anti-linear, if it satisfies B(λv) = λ ·Bv for every v ∈ V

and λ ∈ C .

symbol meaning

dimIK V, dimV the dimension of V

spanIK M, spanM (M ⊂ V a subset) the span of M in V

V1 ⊕ V2 (V1, V2 ⊂ V linear subspaces) the direct sum of V1 and V2

Lr(V,W ) (r ∈ IN) the space of r-linear maps V × . . .× V →W

L(V,W ) = L1(V,W ) (space of linear maps V →W )

V ∗ = L(V, IK) (dual space of V )

End(V ) = L(V, V ) (space of endomorphisms of V )

det(B) (B ∈ End(V )) the determinant of B

tr(B) (B ∈ End(V )) the trace of B

GL(V ) = {B ∈ End(V ) | det(B) 6= 0 } (general linear group)

SL(V ) = {B ∈ End(V ) | det(B) = 1 } (special linear group)

ker(B) (B ∈ L(V,W )) the kernel of B

Eig(B, λ) (B ∈ End(V ), λ ∈ IK) = ker(B − λ idV ) (if 6= {0} , this is an eigenspace of B )

n(B, λ) (B ∈ End(V ), λ ∈ IK) = dim Eig(B, λ) (the multiplicity of λ )

Spec(B) (B ∈ End(V )) = { λ ∈ IK |n(B, λ) > 0 } (the spectrum of B )

Altk(V ) (k ≤ n) the space of alternating k-forms on V

[v] (v ∈ V \ {0}) the 1-dimensional subspace IKv of V

IKP(V ) = { [v] | v ∈ V \ {0} } (the projective space over V )

IP(V ) = CP(V ) in the case IK = C

B (B : V →W linear isomorphism) the (in the case IK = C holomorphic) diffeomorphism

B : IKP(V ) → IKP(W ) characterized by B([v]) = [Bv]

for all v 6= 0

A (IK = C, A : V →W anti-linear isomorphism) the anti-holomorphic diffeomorphism A : CP(V ) →

CP(W ) characterized by A([v]) = [Av] for all v 6= 0

Gk(V ) (k ≤ n) the k-Grassmannian of V , i.e. the set of k-dimensional

linear subspaces of V

For ω ∈ Altn(V )\{0} we call the equivalence class [ω] := IR+ ·ω ⊂ Altn(V )\{0} an orientation

on V ; we call V an oriented linear space if an orientation is fixed on V . If V is an oriented

linear space, we call a basis (b1, . . . , bn) of V positively oriented if ω(b1, . . . , bn) ∈ IR+ holds

for some (and then for every) representative volume form ω of the orientation of V . It should

be noted that we use this terminology even in the case where V is a complex linear space (in

extension of the usual conventions).

We now suppose that V is a euclidean (for IK = IR ) or unitary (for IK = C ) space; we denote

its real resp. complex inner product by 〈·, ·〉 .

symbol meaning

V ⊥,V
1 , V ⊥

1 (V1 ⊂ V linear subspace) ortho-complement of V1 in V

V1 	 V2 (V1, V2 ⊂ V linear subspaces) orthogonal direct sum of V1 and V2

O(V ) (IK = IR) = {B ∈ GL(V ) | ∀v, w ∈ V : 〈Bv,Bw〉 = 〈v, w〉 } (orthogonal group)

SO(V ) (IK = IR) = O(V ) ∩ SL(V ) (special orthogonal group)

O(n), SO(n) O(IRn), SO(IRn)

U(V ) (IK = C) = {B ∈ GL(V ) | ∀v, w ∈ V : 〈Bv,Bw〉 = 〈v, w〉 } (unitary group)

SU(V ) (IK = C) = SU(V ) ∩ SL(V ) (special unitary group)
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symbol meaning

U(V ) (IK = C) the set of maps B : V → V which are anti-unitary, i.e. which are anti-

linear and orthogonal with respect to the real inner product Re(〈·, ·〉)

U(n), SU(n),U(n) U(Cn), SU(Cn), U(Cn)

End+(V ) = {B ∈ End(V ) | ∀v,w ∈ V : 〈Bv,w〉 = 〈v,Bw〉 }

End−(V ) = {B ∈ End(V ) | ∀v,w ∈ V : 〈Bv,w〉 = −〈v,Bw〉 }

‖v‖ (v ∈ V ) =
p

〈v, v〉 (the norm of v )

Sr(V ) (r ∈ IR+) = { v ∈ V | ‖v‖ = r } (the sphere of radius r in V )

S(V ) = S1(V ) (the unit sphere in V )

Sn
r , Sn Sr(IR

n+1), S(IRn+1)

λ] (λ ∈ V ∗) the Riesz vector of λ ; λ] ∈ V is characterized by λ = 〈·, λ]〉

β] (β ∈ L2(V, IK)) the Riesz endomorphism of β ; β] : V → V is characterized by

β(·, w) = 〈·, β](w)〉 for all w ∈ V .

Topological spaces. If X is a topological space, we denote the topology of X (i.e. the set

of all open sets of X ) by Top(X) . For p ∈ X we call an open set U ∈ Top(X) with p ∈ U

an open neighbourhood of p in X ; Ulo(p,X) := {U ∈ Top(X) | p ∈ U } is the set of all open

neighbourhoods of p in X .

Manifolds. All manifolds considered here are differentiable, Hausdorff, paracompact and

without boundary; the term differentiable always means C∞. We suppose all objects defined on

manifolds (maps, tensor fields, etc.) to be differentiable, unless noted otherwise. Let M be a

manifold. Then a subset N ⊂M , which is equipped with the structure of a manifold in such a

way that the inclusion map N ↪→M is an immersion, is called a submanifold of M , see [Var74],

p. 18. If additionally the intrinsic topology of N coincides with the topology inherited from

M , we call N a regular submanifold of M . Differentiable maps α : J →M , where J ⊂ IR is

an interval, are called curves.

If M is a manifold and p ∈ M , we denote the tangent space of M in p by TpM . If N is

another manifold and f : M → N a differentiable map, we denote by Tpf : TpM → Tf(p)N

or by f∗ : TpM → Tf(p)N the tangential of f in p . If α : J → M is a curve, we denote by

α̇(t) ∈ Tα(t)M the tangent vector of α in t ∈ J .

If V is a (real or complex) linear space, which we here also regard as a manifold, and p ∈ V ,

there is a canonical linear isomorphism TpV → V, u 7→ −→u characterized by

∀u ∈ TpV : (t 7→ p+ t · −→u )·(0) = u ,

called the arrow map. We denote by ∂ the canonical vector field of IR , it is characterized by−→
∂t = 1 for every t ∈ IR . If α : J → IR is a curve, we have α̇(t) = α∗∂t for any t ∈ J .

Let M and N be manifolds, f : M → N be a map, and denote the tangent bundle of N by

π : TN → N . Then we call the maps X : M → TN with X ◦π = f vector fields along f , and

denote the space of such fields by Xf (N) . We also put X(N) := XidN
(N) , this is the space of

usual vector fields on N . If a covariant derivative ∇ on N is given, we consider ∇vX also for

vector fields X ∈ Xf (N) and v ∈ TM in the way described in [Poo81]. The application of the

covariant derivative to vector fields along f , which greatly extends the flexibility in handling

vector fields on manifolds, is due to P. Dombrowski.
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Lie groups and Lie algebras. Let G and G′ be Lie groups.

symbol meaning

eG the neutral element of G

G0 the neutral component of G

g the Lie algebra corresponding to G

fL ( f : G → G′ a Lie group homomorphism) the linearization fL : g → g′ of f

Lg (g ∈ G) the left translation G→ G, x 7→ g · x

Ig (g ∈ G) the inner automorphism G → G, x 7→ g · x · g−1

AdG(g), Ad(g) (g ∈ G) = (Ig)L ∈ GL(g) (the adjoint representation of G )

Let V be a (real or complex) linear space. Then GL(V ) is a Lie group, whose Lie algebra

gl(V ) is isomorphic to End(V ) via the map

gl(V ) → End(V ), X 7→ −−→
XidV

(where the Lie algebra structure on End(V ) is given by the commutator [A,B] 7→ A ◦ B −
B ◦ A ). In the sequel we identify gl(V ) with End(V ) via this isomorphism. We also use this

identification for the classical Lie subgroups of GL(V ) ; thereby we obtain the following Lie

algebras:

Lie algebra requirement on V corresponding Lie group explicit description of the Lie algebra

sl(V ) V a IK-linear space SL(V ) {X ∈ End(V ) | tr(X) = 0 }

o(V ) V a euclidean space O(V ) or SO(V ) = O(V )0 End−(V )

u(V ) V a unitary space U(V ) End−(V )

su(V ) V a unitary space SU(V ) {X ∈ End−(V ) | tr(X) = 0 }

Riemannian and Hermitian manifolds. If M is a Riemannian manifold, we denote the

Lie group of isometries M → M by I(M) . If M is a Hermitian manifold, we denote the

Lie subgroup of holomorphic isometries M → M by Ih(M) . Also, we then denote the set of

anti-holomorphic isometries M → M by Iah(M) ; in the case Iah(M) 6= ∅ , this is a coset in

I(M) .

If M and M ′ are Riemannian manifolds, f : M → M ′ a differentiable map and p ∈ M , we

call

⊥pf := { v ∈ Tf(p)M
′ | ∀w ∈ TpM : 〈v, f∗w〉M ′ = 0 }

the normal space of f at p , also we call ⊥1
pf := S(⊥pf) the sphere of unit normal vectors

of f at p . If f is an immersion, then f gives rise to a subbundle of the tangent bundle of

M ′ along f in this way, which we call the normal bundle of f and denote by ⊥f . We then

also consider the sphere bundle ⊥1f of unit spheres in ⊥f . If N is a submanifold of M , we

define the normal spaces and the normal bundle of N in terms of the inclusion map N ↪→M :

For p ∈ N we put ⊥pN :=⊥p(N ↪→ M) , ⊥1
pN :=⊥1

p(N ↪→ M) , ⊥N :=⊥(N ↪→ M) and

⊥1N :=⊥1(N ↪→M) .



Chapter 1

Complex quadrics

In this chapter the intrinsic and extrinsic geometry of complex quadrics as complex hypersurfaces

of the complex projective space is studied.

At first, we take the viewpoint of algebraic geometry, where complex quadrics are defined as the

zero locus of a non-degenerate quadratic equation in a complex projective space IPn (without

any binding to a Riemannian metric on IPn ). But then it turns out that among the complex

quadrics of algebraic geometry there are certain ones which are particularly well-adapted to the

Fubini-Study metric of the complex projective space IPn . From that point on, we will only

consider complex quadrics of the latter kind, and we will call these simply complex quadrics.

In Sections 1.3 and 1.4 we calculate the shape operator of such a quadric Q (as a complex

hypersurface of IPn ) and the curvature tensor and the Ricci tensor of Q . In particular we find

that the structure of the shape operator in a point p ∈ Q is very simple – it is that of a “circle of

conjugations” on the unitary space TpQ . This observation is fundamental for all the subsequent

studies of complex quadrics.

As was already mentioned in the Introduction, the methods developed in [Rec95] for the study

of the complex quadric had a very strong influence on the present dissertation. The approach

to the complex quadric taken here in the first three chapters are modeled on [Rec95]. In the

present chapter, in particular the calculations of the shape operator and the curvature tensor of

the complex quadric closely follow [Rec95].

1.1 Complex quadrics in algebraic geometry

Let m ∈ IN and a complex linear space V of dimension n := m+ 2 be given. We consider the

complex projective space IP(V) of V , this is an (m+ 1)-dimensional projective variety.

In the context of algebraic geometry, one calls any subvariety Q(β) of IP(V) which is defined

via a non-degenerate symmetric bilinear form β : V × V → C by

Q(β) = { [z] ∈ IP(V) | z ∈ V \ {0}, β(z, z) = 0 }

19
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a complex quadric. To emphasize the absence of reference to any metric structure, we will call

such quadrics algebraic complex quadrics. For any such quadric, we also consider the corres-

ponding quadratic cone

Q̂(β) := { z ∈ V \ {0} |β(z, z) = 0 } .

1.1 Example. Consider the non-degenerate symmetric bilinear form β : Cm+2 × Cm+2 → C,

(v, w) 7→∑m+2
k=1 vk wk . Then we call the algebraic complex quadric

Qm := Q(β) =
{

[z1, . . . , zm+2] ∈ IPm+1
∣∣∣
∑m+2

k=1 z
2
k = 0

}

the standard complex quadric of dimension m .

1.2 Proposition. Let β : V × V → C be a non-degenerate symmetric bilinear form.

(a) Q(β) is a regular complex hypersurface2 of IP(V) .

(b) Q̂(β) is a regular complex hypersurface of V with

∀z ∈ Q̂(β) :
−−−−→
TzQ̂(β) = { v ∈ V |β(v, z) = 0 } .

Proof. (b) is a direct consequence of the complex version of the theorem on equation-defined

manifolds (see for example [Nar68], Corollary 2.5.5, p. 81). For (a), we note that the map

π̂ : V\{0} → IP(V), z 7→ [z] is a surjective holomorphic submersion and that Q̂(β) is saturated

with respect to π̂ . Therefore Q = π̂(Q̂(β)) is a complex hypersurface of IP(V) and the

codimension of Q(β) in IP(V) is equal to the codimension of Q̂(β) in V . �

1.3 Proposition. Let β, β ′ be two non-degenerate symmetric bilinear forms on V . Then we have

Q(β) = Q(β ′) ⇐⇒ ∃λ ∈ C× : β′ = λ · β .

Proof. The implication “⇐=” is obvious. Conversely, let non-degenerate symmetric bilinear

forms β , β ′ on V be given so that Q(β) = Q(β ′) holds. The relation β(v, w) = 0 can be

characterized geometrically by properties of the set Q̂(β) alone, see [Wal85], Satz 6.2.F, p. 189

and the remark following it. Therefore Q(β) = Q(β ′) implies

∀v, w ∈ V : (β(v, w) = 0 ⇐⇒ β ′(v, w) = 0) . (1.1)

[Wal85], Lemma 6.2.G, p. 190 shows that (1.1) implies the existence of λ ∈ C so that β ′ = λ ·β
holds; because β ′ is non-zero, we have λ 6= 0 . �

1.4 Proposition. Let β be a non-degenerate symmetric bilinear form on V . Then there exists a

basis (b1, . . . , bn) of V so that

∀v, w ∈ V : β(v, w) =
∑

k

λk(v) · λk(w) (1.2)

holds, where (λ1, . . . , λn) denotes the basis of V∗ which is dual to (b1, . . . , bn) . We call any

such basis (b1, . . . , bn) an adapted basis for β .

2A complex hypersurface is a submanifold of complex codimension 1 .
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Proof. A basis (b1, . . . , bn) satisfies (1.2) if and only if it is an orthonormal basis with respect

to the non-degenerate, symmetric complex-bilinear form β . For the existence of such bases, see

for example [Bri85], Satz 12.44, p. 420. �

1.5 Proposition. Let β be a non-degenerate symmetric bilinear form on V , and let V ′ be another

n-dimensional complex linear space.

(a) Let B : V → V′ be a linear isomorphism. Then

β′ : V′ × V′ → C, (v, w) 7→ β(B−1v,B−1w) (1.3)

is a non-degenerate symmetric bilinear form on V′ and we have Q̂(β′) = B(Q̂(β)) . More-

over, with the biholomorphic map B : IP(V) → IP(V′) induced by B (in the way described

in Section 0.2) we have Q(β ′) = B(Q(β)) .

(b) If β′ is any non-degenerate symmetric bilinear form on V′ , then there exists a linear

isomorphism B : V → V′ so that β′ is described by (1.3).

This proposition shows in particular that any two m-dimensional algebraic complex quadrics

are biholomorphically equivalent.

Proof. (a) is obvious. For (b), choose adapted bases (b1, . . . , bn) for β and (b′1, . . . , b
′
n) for β′ ,

and consider the linear map B : V → V′ characterized by Bbk = b′k for k ∈ {1, . . . , n} . Then

we have

∀v, w ∈ V : β ′(Bv,Bw) = β(v, w) ,

therefore β ′ is described by (1.3) with this choice of B . �

1.2 Symmetric complex quadrics

In the situation of the previous section, we now suppose that V is a unitary space. We denote

its inner product by 〈·, ·〉C . We will also consider V as an euclidean space via the real inner

product 〈·, ·〉IR := Re(〈·, ·〉C) ; this euclidean space additionally carries the orthogonal complex

structure J : V → V, v 7→ i · v . In the sequel, the orthogonal complement W ⊥ of an IR-linear

subspace W ⊂ V is always constructed with respect to the real inner product 〈·, ·〉IR . The map

π : S(V) → IP(V), z 7→ [z]

is called the Hopf fibration of V .

As is well-known, we have for any z ∈ S(V)

−−−−→
TzS(V) = (IR z)⊥ (1.4)

and the vertical space Vz := ker Tzπ of π at z satisfies

−→Vz = IR iz . (1.5)
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Consequently, the complex linear subspace Hz := (Vz)⊥,TzS(V) of TzV is described by

−→Hz = (C z)⊥ . (1.6)

(Hz)z∈S(V) is an Ehresmann connection for π . The group G := {λ · idS(V) |λ ∈ S1 } acts on

S(V) and g∗|Hz : Hz → Hg(z) is a C-linear isometry for every g ∈ G and z ∈ S(V) . Because

the orbits of the action of G on S(V) are exactly the fibres of π , it follows that there is one

and only one Riemannian metric on IP(V) so that IP(V) becomes a Hermitian manifold and π

becomes a Hermitian submersion, meaning that the map

π∗|Hz : Hz → Tπ(z)IP(V)

is a C-linear isometry for every z ∈ S(V) . This Riemannian metric on IP(V) is called the

Fubini-Study metric. In this way, IP(V) becomes an irreducible Hermitian symmetric space of

rank 1 , which has constant holomorphic sectional curvature 4 (see [KN69], Example XI.10.5,

p. 273). In the sequel we always regard IP(V) in this way.

Let V′ be another n-dimensional unitary space and B : V → V′ be a C-linear isometry. Then

the induced map B : IP(V) → IP(V′) satisfies π ◦ (B|S(V)) = B ◦ π , and because B preserves

the inner product and the complex structure on (Hz)z∈S(V) , B is a biholomorphic isometry.

Similarly, any anti-unitary map B : V → V (i.e. B is anti-linear and orthogonal with respect

to 〈·, ·〉IR ) induces an anti-holomorphic isometry B : IP(V) → IP(V′) . It can be shown that any

isometry f : IP(V) → IP(V′) is either holomorphic or anti-holomorphic, and can be described

as f = B with a suitable C-linear resp. anti-linear isometry B : V → V′ .

Any algebraic complex quadric in IP(V) is a complex hypersurface and as such inherits the

structure of a Hermitian manifold from IP(V) . However, not every algebraic complex quadric

is equally well-adapted to the metric structure of IP(V) . We will now describe a subset of the

set of algebraic complex quadrics, whose members we will call symmetric complex quadrics, and

which are particularly well-behaved with respect to the Fubini-Study metric of IP(V) .

For any non-degenerate, symmetric bilinear map β : V × V → C , the Riesz endomorphism

A := β] : V → V of β is characterized by

∀v, w ∈ V : β(v, w) = 〈v,Aw〉C .

A is anti-linear and satisfies 〈Av,w〉C = 〈v,Aw〉C for v, w ∈ V (by virtue of the symmetry

of β ), in particular it is IR-linear and self-adjoint with respect to 〈·, ·〉IR . Of course, A contains

all information of β , so we can define Q(A) := Q(β) and Q̂(A) := Q̂(β) without ambiguity.

1.6 Definition. We call an anti-linear endomorphism of V which is self-adjoint with respect to

〈·, ·〉IR a conjugation on V , if it is also orthogonal with respect to 〈·, ·〉IR .
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1.7 Proposition. Let β be a non-degenerate, symmetric bilinear map on V and put A := β ] :

V → V . Then the following statements are equivalent:

(a) β has an adapted basis which is a unitary basis of V .

(b) A is a conjugation on V .

If these statements hold, we call Q(β) a symmetric complex quadric.

Proof. For (a) ⇒ (b). Let (b1, . . . , bn) be an adapted basis for β which is also a unitary basis

of V and denote by (λ1, . . . , λn) the dual basis of V∗ . By Proposition 1.4, we have for any

v, w ∈ V

〈v,Aw〉C = β(v, w) =
∑

k λk(v) · λk(w) =
∑

k,` λk(v) · λ`(w) · 〈bk, b`〉C
=
〈∑

k λk(v)bk ,
∑

` λ`(w)b`
〉
C

=
〈
v ,
∑

` λ`(w)b`
〉
C

and consequently

∀w ∈ V : Aw =
∑

`

λ`(w) · b` .

It follows that A ◦A = idV and hence

∀v, w ∈ V : 〈Av,Aw〉IR = 〈v,A(Aw)〉IR = 〈v, w〉IR

holds. Thus A is orthogonal with respect to 〈·, ·〉IR and therefore a conjugation on V .

For (b) ⇒ (a). A is self-adjoint with respect to 〈·, ·〉IR and therefore real diagonalizable; as a

conjugation, A is also orthogonal with respect to 〈·, ·〉IR , and therefore 1 and −1 are the only

possible eigenvalues, whence we have V = Eig(A, 1)	 Eig(A,−1) . Because A is anti-linear, we

have A ◦ J = −J ◦ A and therefore Eig(A,−1) = J(Eig(A, 1)) . It follows that

V = Eig(A, 1) 	 J(Eig(A, 1)) (1.7)

holds; in particular, Eig(A, 1) and Eig(A,−1) are totally real3 subspaces of V .

Equation (1.7) shows that any orthonormal basis (b1, . . . , bn) of Eig(A, 1) is a unitary basis of

V and we have for v, w ∈ V

β(v, w) = 〈v,Aw〉C =
∑

k,`

λk(v)λ`(w) 〈bk, Ab`︸︷︷︸
=b`

〉C =
∑

k

λk(v)λk(w) ,

showing that (b1, . . . , bn) is an adapted basis for β . �

1.8 Example. The standard complex quadric Qm of Example 1.1 is a symmetric quadric; it cor-

responds to the usual conjugation z 7→ z on Cm+2 , which also is a conjugation in the sense of

Definition 1.6.

3We call an IR-linear subspace W ⊂ V totally real, if JW ⊂W⊥ holds.
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The algebraic properties of conjugations will be further studied in Chapter 2; for the purposes

of the present chapter, we only extract the facts which were proved during the proof of Propo-

sition 1.7, (b) ⇒ (a):

1.9 Proposition. Let A : V → V be a conjugation. Then A (seen as an IR-linear map) is

real diagonalizable, its spectrum is {1,−1} , the corresponding eigenspaces V (A) := Eig(A, 1)

and Eig(A,−1) = JV (A) are totally-real subspaces of V of real dimension n and we have

V = V (A) 	 JV (A) .

1.10 Proposition. Let A,A′ be two conjugations on V . Then we have

Q(A) = Q(A′) ⇐⇒ ∃λ ∈ S1 : A′ = λ ·A .

Proof. For any anti-linear map A : V → V and λ ∈ C , both A and λA can be conjugations

only if λ ∈ S1 holds. Using this fact, this proposition follows from Proposition 1.3. �

1.11 Proposition. Let A : V → V be a conjugation on V and V′ be another n-dimensional unitary

space.

(a) Let B : V → V′ be a C-linear isometry. Then A′ := B ◦A ◦ B−1 is a conjugation on V′

and we have Q̂(A′) = B(Q̂(A)) and Q(A′) = B(Q(A)) .

(b) If A′ is any conjugation on V′ , then there exists a C-linear isometry B : V → V′ so that

A′ = B ◦ A ◦ B−1 holds.

Proof. For (a). Obvious. For (b). We consider the bilinear forms

β : V × V → C, (v, w) 7→ 〈v,Aw〉C and β′ : V′ × V′ → C, (v, w) 7→ 〈v,A′w〉C .

Let (b1, . . . , bn) and (b′1, . . . , b
′
n) be adapted bases of β resp. β ′ which are also unitary bases of

V resp. V′ (see Proposition 1.7). Then the linear map B : V → V′ characterized by B(bk) = b′k
for k ∈ {1, . . . , n} is a linear isometry and satisfies A′ = B ◦ A ◦ B−1 . �

1.12 Remarks. (a) I stated above that the symmetric complex quadrics are better-adapted to the

Fubini-Study metric of IP(V) than algebraic complex quadrics in general. This claim is

justified by the following observations:

(i) As Proposition 1.11 shows, the set Q(V) of symmetric quadrics in IP(V) is a holo-

morphic congruence class of submanifolds of IP(V) , this means: Q(V) is one orbit

of the canonical action of the group Ih(IP(V)) of holomorphic isometries of IP(V) on

the set of all algebraic quadrics in IP(V) .

(ii) Among the algebraic complex quadrics, the symmetric quadrics are exactly those

which are extrinsically symmetric submanifolds of IP(V) (see [NT89], p. 171),

i.e. which are invariant with respect to the reflections in their normal spaces in IP(V) .

This is the reason for naming these quadrics “symmetric”. It is a consequence that
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the shape operator of the inclusion Q ↪→ IP(V) , where Q is a symmetric quadric, is

parallel (see [Nai86], Corollary 1.4, p. 218). We will give a direct proof of the latter

fact in Section 1.3 below.

(iii) Symmetric complex quadrics are also distinguished among the algebraic complex

quadrics by the fact that they are Einstein manifolds (see Proposition 1.23 below).

(b) Let V be a “bare” complex linear space and Q = Q(β) an algebraic complex quadric of

V . If we choose any adapted basis of β and denote by 〈·, ·〉C the inner product on V for

which this basis is a unitary basis, then Q is a symmetric complex quadric with respect

to 〈·, ·〉C (see Proposition 1.7).

We fix a conjugation A : V → V and consider the corresponding bilinear form

β : V × V → C, (v, w) 7→ 〈v,Aw〉C

and the corresponding quadric Q(A) . We also consider the pre-image of Q(A) under the Hopf

fibration π : S(V) → IP(V)

Q̃(A) := Q̃(β) := { z ∈ S(V) |β(z, z) = 0 } = Q̂(β) ∩ S(V) .

By applying the theorem on equation-defined manifolds, we see that Q̃(A) is a submanifold of

S(V) of real codimension 2 .

1.13 Proposition. For z ∈ Q̃(A) , we have

(a)
−−−−−→
TzQ̃(A) = { v ∈ V | 〈v,Az〉C = 0, 〈v, z〉IR = 0 } .

(b) If we denote the horizontal lift of TpQ(A) with respect to π at z by HzQ(A) :=

(π∗|Hz)
−1(TpQ(A)) , we have HzQ(A) = Hz ∩ TzQ̃(A) and

−−−−−→HzQ(A) = { v ∈ V | 〈v, z〉C = 〈v,Az〉C = 0 } . (1.8)

Proof. For (a). This is easily verified using the theorem on equation-defined manifolds. For

(b). The equality HzQ(A) = Hz ∩TzQ̃(A) follows easily from the fact that Q̃(A) = π−1(Q(A))

holds, and Equation (1.8) then follows from (a) and Equation (1.6). �

The symmetric complex quadrics are the central object of study in this work. For this reason,

we shall henceforth adopt the following terminology:

Throughout the entire dissertation, the term complex quadric always refers to a symmetric

complex quadric, unless noted otherwise by the use of the attribute “algebraic”.
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1.3 The shape operator of Q ↪→ IP(V)

In this section we calculate the shape operator of the inclusion map Q ↪→ IP(V) . As was already

mentioned, these calculations closely follow those of [Rec95].

In the situation of the previous section, let us fix a conjugation A : V → V and abbreviate

Q := Q(A) , Q̃ := Q̃(A) and Q̂ := Q̂(A) . In the sequel, we will take the liberty of denoting

by 〈·, ·〉 the real inner product 〈·, ·〉IR of V , the induced Riemannian metric on the manifold

V and the Fubini-Study metric of IP(V) ; similarly, we will denote by J the complex structure

of the euclidean space V and the complex structure of the Hermitian manifold IP(V) .

We denote for any p ∈ Q and ζ ∈⊥p(Q ↪→ IP(V)) the shape operator of the inclusion map

Q ↪→ IP(V) with respect to ζ by AQζ : TpQ→ TpQ .

1.14 Proposition. The map ⊥p(Q ↪→ IP(V)) → EndIR(TpQ), ζ 7→ AQζ is C-linear for any p ∈ Q .

Proof. [KN69], Proposition IX.9.1, p. 175 shows that this statement holds because IP(V) is a

Kähler manifold (see [KN69], Example IX.6.3, p. 159f.) and Q is a complex submanifold of

IP(V) . �

To obtain further information on AQ , we introduce the following objects:

• The vector field η ∈ XS(V)↪→V(V) characterized by

∀z ∈ S(V) : −→ηz = z ;

as Equation (1.4) shows, η is a unit normal field to S(V) , and by Equation (1.5) the

vector field J ◦ η is tangential to S(V) and vertical with respect to π .

• The tensor field C of type (1,1) on V characterized by

∀u ∈ TV :
−→
Cu = A(−→u ) ;

by Proposition 1.13(b), the conjugation Cz on the unitary space TzV leaves HzQ invari-

ant for every z ∈ Q̃ . Also note that we have

〈Cηz, ηz〉C = 0 (1.9)

and therefore Cηz ∈ Hz by Equation (1.6); in particular Cηz is tangential to S(V) .

• The vector field ξ̃ := −C ◦η|Q̃ along Q̃ ↪→ V ; by Equation (1.6) and Proposition 1.13(b),

ξ̃ is a unit vector field tangential to S(V) , horizontal with respect to π and normal to

Q̃ . Consequently, ξ := π∗ξ̃ is a unit vector field of IP(V) along π|Q̃ , which is normal to

Q .

1.15 Proposition. For any z ∈ Q̃ and λ ∈ S1 , we have ξ(λz) = λ−2 · ξ(z) . It follows that for any

p ∈ Q , ξ(z) runs through ⊥1
pQ , if z runs through the fibre π−1({p}) .
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Proof. For any λ ∈ S1 , we consider the map Rλ : S(V) → S(V), z 7→ λz . Because Rλ is an

isometry which leaves the fibres of π invariant, we have

∀z ∈ S(V) : (Rλ)∗Hz = Hλz . (1.10)

We now prove

∀w1 ∈ Hz, w2 ∈ Hλz :
(
π∗w2 = π∗w1 ⇐⇒ −→w2 = λ · −→w1

)
. (1.11)

Let w1 ∈ Hz and w2 ∈ Hλz be given. We have π ◦R−1
λ = π and therefore

π∗w2 = π∗(Rλ)
−1
∗ w2 . (1.12)

By Equation (1.10), we further have w1, (Rλ)
−1
∗ w2 ∈ Hz and thus

π∗w2 = π∗w1
(1.12)⇐⇒ π∗(Rλ)

−1
∗ w2 = π∗w1

⇐⇒ (Rλ)
−1
∗ w2 = w1

⇐⇒
−−−−−−→
(Rλ)

−1
∗ w2 = −→w1 ⇐⇒ −→w2 = λ · −→w1 ,

completing the proof of (1.11).

For any z ∈ Q̃ and λ ∈ S1 , we have

−−−→
ξ̃(λz) = −A(λz) = −λ−1 · Az = λ · (−λ−2Az) = λ ·

−−−−−→
λ−2ξ̃(z)

By (1.11) we conclude ξ(λz) = λ−2ξ(z) . �

1.16 Theorem. Let z ∈ Q̃ be given and put p := π(z) ∈ Q . Then the following diagrams commute:

HzQ
Cz //

π∗|HzQ
��

HzQ

π∗|HzQ
��

TpQ
AQ

ξ(z)

// TpQ

and

−−→HzQ
A //

Φ
��

−−→HzQ

Φ
��

TpQ
AQ

ξ(z)

// TpQ ,

(1.13)

where the map Φ :
−−→HzQ→ TpQ occurring in the second diagram is characterized by Φ(−→v ) = π∗v

for all v ∈ HzQ .

In particular, AQξ(z) is a conjugation on the unitary space TpQ .

As Proposition 1.15 shows, this theorem fully describes the shape operator AQ .

Proof. We denote the Levi-Civita covariant derivatives of V , S(V) , Q̃ , IP(V) and Q by ∇V ,

∇S , ∇ eQ , ∇IP and ∇Q , respectively. Further, we denote the covariant derivative of the normal

bundle of Q ↪→ IP(V) by ∇⊥Q . For v ∈ T IP(V) , we denote by ṽ the horizontal lift of v with

respect to π . Also, for w ∈ TzV we denote by H(w) and V(w) the orthogonal projection of
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w onto Hz resp. onto Vz . We will use the analogous notations when a vector field takes the

place of the vector v resp. w .

The fundamental instrument for the proof of the theorem is the formula of O’Neill for the

horizontal lift of a covariant derivative (see [O’N83], Lemma 7.45, p. 212). In the situation

where N is a manifold, g : N → S(V) is a differentiable map, Y ∈ Xg(S(V)) is a horizontal

vector field, p ∈ N and v ∈ TpN is such a vector that g∗v ∈ Hg(p) holds, it states

H(∇S
vY ) = ∇̃IP

v π∗Y . (1.14)

On the other hand, Jηg(p) spans Vg(p) , therefore we have

V(∇S

vY ) = 〈∇S

vY, Jηg(p)〉 · Jηg(p) . (1.15)

Because Y is horizontal and Jη is vertical, we have 〈Y, Jη ◦ g〉 ≡ 0 and therefore

〈∇S
vY, Jηg(p)〉 = −〈Yp,∇S

v(Jη ◦ g)〉 = −〈Yp,∇S
g∗vJη〉 = −〈Yp, Jg∗v〉 = 〈g∗v, JYp〉 ; (1.16)

note that ∇S
wJη = Jw holds for any w ∈ Hg(p) . By plugging Equation (1.16) into Equa-

tion (1.15), we obtain

V(∇S
vY ) = 〈g∗v, JYp〉 · Jηg(p) . (1.17)

Equations (1.14) and (1.17) together show

∇S
vY = ∇̃IP

v π∗Y + 〈g∗v, JYp〉 · Jηg(p) . (1.18)

After these preparations, we show that the first diagram of (1.13) commutes. Let w ∈ HzQ be

given. Because C and ∇V commute, we get via the Gauss equation and (1.9)

Cw = C(∇V
wη) = ∇V

wCη = ∇S
wCη − 〈w,Cηz〉 · ηz

= −∇S
wξ̃ + 〈w, ξ̃z〉︸ ︷︷ ︸

=0

·ηz = −∇S
wξ̃ ,

and therefore by means of Equation (1.18)

∇̃IP
w ξ = ∇S

w ξ̃ − 〈w, Jξ̃z〉︸ ︷︷ ︸
=0

·Jηz = ∇S
wξ̃ = −Cw ∈ HzQ . (1.19)

The Weingarten equation ∇IP
w ξ = −AQξ(z)π∗w + ∇⊥Q

w ξ therefore shows

AQξ(z)π∗w = π∗Cw and ∇⊥Q
w ξ = 0 . (1.20)

In particular, the commutativity of the first diagram of (1.13) is proved, and the commutativity

of the second diagram of (1.13) is an immediate consequence. �

We read the following lemma off the second part of (1.20):

1.17 Lemma. ξ is a parallel unit normal field along π|Q̃ .
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1.18 Theorem. The shape operator AQ of Q ↪→ IP(V) is parallel with respect to ∇Q .

Proof. As we already noted in Remark 1.12, this theorem is a consequence of the fact (not yet

proven here) that Q is an extrinsically symmetric submanifold of IP(V) . But now we wish to

give an elementary proof.

We continue to use the notations of the proof of Theorem 1.16 and note that an analogous

argument as that leading to Equation (1.18) in the proof of Theorem 1.16 shows that if g : N →
Q̃ is a differentiable map, Y ∈ Xg(Q̃) is a horizontal vector field, p ∈ N and v ∈ TpN is such

a vector that g∗v ∈ Hg(p)Q holds, then we have

∇ eQ
v Y = ∇̃Q

v π∗Y + 〈g∗v, JYp〉 · Jηg(p) . (1.21)

Because of Lemma 1.17, it suffices to show that for any curve c : I → Q , any horizontal

lift c̃ : I → Q̃ of c with respect to π and any parallel field X ∈ Xc(Q) the vector field

t 7→ AQξ◦ec(t)X(t) along c is parallel.

In this situation, let t ∈ I be given. Then Equation (1.21) shows

∇ eQ
∂t
X̃ = ∇̃Q

∂t
X

︸ ︷︷ ︸
=0

+〈 ˙̃c, JX̃〉 · Jη ◦ c̃
∣∣∣∣
t

∈ Vec(t) (1.22)

and also, because we have AQξ◦ecX = π∗(CX̃) by Theorem 1.16,

∇ eQ
∂t
CX̃ =

˜∇Q
∂t
AQξ◦ecX + 〈 ˙̃c, JCX̃〉 · Jη ◦ c̃

∣∣∣∣
t

. (1.23)

In order to combine Equations (1.22) and (1.23), it would be nice if C and ∇ eQ would commute;

but they do not. Therefore we must go back to V : By Equation (1.22), we have ∇ eQ
∂t
X̃ ⊥ Hec(t)Q ,

and therefore the Gauss equation shows

∇V
∂t
X̃ = ∇ eQ

∂t
X̃ + h

eQ↪→V(˙̃c, X̃)

∣∣∣∣
t

⊥ Hec(t)Q ,

where h
eQ↪→V denotes the second fundamental form of Q̃ ↪→ V . It follows that

∇V
∂t
CX̃ = C(∇V

∂t
X̃) ⊥ Hec(t)Q (1.24)

holds. On the other hand, we get via the Gauss equation and Equation (1.23):

∇V
∂t
CX̃ = ∇ eQ

∂t
CX̃ + h

eQ↪→V(˙̃c, CX̃)

∣∣∣∣
t

=
˜∇Q
∂t
AQξ◦ecX + 〈 ˙̃c, JCX̃〉 · Jη ◦ c̃

∣∣∣∣
t

+ h
eQ↪→V(˙̃c, CX̃)

∣∣∣∣
t︸ ︷︷ ︸

⊥Hec(t)Q

. (1.25)
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By combining Equations (1.24) and (1.25), we see that
˜∇Q
∂t
AQξ◦ecX ⊥ Hec(t)Q holds, whereas on

the other hand, we have by definition
˜∇Q
∂t
AQξ◦ecX ∈ Hec(t)Q . It follows that

˜∇Q
∂t
AQξ◦ecX = 0 and

hence ∇Q
∂t
AQξ◦ecX = 0 holds. �

1.19 Proposition. We consider the Hermitian metric 〈·, ·〉C on IP(V) induced by (〈·, ·〉, J) :

∀v, w ∈ T IP(V) ×IP(V) T IP(V) : 〈v, w〉C = 〈v, w〉 + i · 〈v, Jw〉 . (1.26)

Let M be a complex hypersurface of IP(V) . Then the second fundamental form hM of M is

related to the shape operator AM of M by the equation

∀p ∈M, v,w ∈ TpM, ζ ∈⊥1
p(M ↪→ IP(V)) : hM (v, w) = 〈v,AMζ w〉C · ζ . (1.27)

Of course, this fact is applicable in particular for M = Q .

Proof. The crucial point here is the fact that

∀ζ ∈⊥1
p(M ↪→ IP(V)) : AMJζ = J ◦AMζ (1.28)

holds. Indeed, if we let a section s in the unit normal bundle ⊥1(M ↪→ IP(V)) and v ∈ TM

be given, we have because of the parallelity of J

∇IP
v Js = J ∇IP

v s

(where ∇IP again denotes the covariant derivative of IP(V) ). From this equation, (1.28) follows

via the Weingarten equation.

For given p ∈M and ζ ∈⊥1
p(M ↪→ IP(V)) , (ζ, Jζ) is an orthonormal basis of ⊥p(M ↪→ IP(V)) ,

and therefore we obtain for any v, w ∈ TpM

hM (v, w) = 〈hM (v, w), ζ〉ζ + 〈hM (v, w), Jζ〉Jζ
= 〈v,AMζ w〉ζ + 〈v,AMJζw〉Jζ

(1.28)
= 〈v,AMζ w〉ζ + 〈v, JAMζ w〉Jζ

(1.26)
= 〈v,AMζ w〉C · ζ . �

1.4 The curvature of a complex quadric

1.20 Proposition. Let M be a complex hypersurface of IP(V) , p ∈ M , u, v, w ∈ TpM and

ζ ∈⊥1
p(M ↪→ IP(V)) . Denoting the complex inner product on TpIP(V) (see Equation (1.26)) by

〈·, ·〉C , the curvature tensor of M by RM and the shape operator of M ↪→ IP(V) by AM , we

have

RM (u, v)w = 〈w, v〉C u− 〈w, u〉C v − 2 〈Ju, v〉 Jw + 〈v,AMζ w〉C AMζ u− 〈u,AMζ w〉CAMζ v
= 〈v, w〉u − 〈u,w〉v + 〈Jv,w〉Ju − 〈Ju,w〉Jv − 2 · 〈Ju, v〉Jw

+ 〈v,AMζ w〉AMζ u− 〈u,AMζ w〉AMζ v + 〈v, JAMζ w〉JAMζ u− 〈u, JAMζ w〉JAMζ v .
(1.29)
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Proof. We denote the second fundamental form of the inclusion M ↪→ IP(V) by hM and the

curvature tensor of IP(V) by RIP ; as it is well-known, we have

RIP(u, v)w = 〈v, w〉u − 〈u,w〉v + 〈Jv,w〉Ju − 〈Ju,w〉Jv − 2 · 〈Ju, v〉Jw
= 〈w, v〉C u− 〈w, u〉C v − 2 · 〈Ju, v〉Jw . (1.30)

Now let u, v, w, x ∈ TpM be given. The Gauss equation of second order states in the present

situation:

〈RM (u, v)w, x〉 = 〈RIP(u, v)w, x〉 + 〈hM (u, x), hM (v, w)〉 − 〈hM (u,w), hM (v, x)〉 . (1.31)

Using Proposition 1.19, we obtain:
〈
hM (u, x) , hM (v, w)

〉
=
〈
〈u,AMζ x〉C ζ , 〈v,AMζ w〉C ζ

〉

=
〈
ζ , 〈AMζ u, x〉C 〈v,AMζ w〉C ζ

〉

=
〈
ζ, 〈〈v,AMζ w〉CAMζ u, x〉C ζ

〉

= Re
(
〈〈v,AMζ w〉CAMζ u, x〉C

)

=
〈
〈v,AMζ w〉CAMζ u , x

〉
(1.32)

and analogously 〈
hM (u,w) , hM (v, x)

〉
=
〈
〈u,AMζ w〉CAMζ v , x

〉
. (1.33)

We now obtain the first equals sign in (1.29) by plugging Equations (1.30), (1.32) and (1.33) into

Equation (1.31), noting that RM (u, v)w ∈ TpM holds because of (1.30), and varying x ∈ TpM ;

the second equals sign then follows from Equation (1.26). �

We now return to the specific situation of the previous section, where Q is a complex quadric

in IP(V) (described by some conjugation on V ).

1.21 Proposition. (a) The curvature tensor RQ of Q is described by Equation (1.29) (if one

replaces M by Q throughout).

(b) Q is a locally symmetric space.

1.22 Remark. In Chapter 3 we will see that Q is in fact a Hermitian globally symmetric space.

Proof of Proposition 1.21. For (a). This is an immediate consequence of Proposition 1.20.

For (b). We only have to show that the curvature tensor RQ is parallel. Let a curve c : I → Q

and parallel vector fields X,Y,Z ∈ Xc(Q) along c be given. It then suffices to show that the

vector field RQ(X,Y )Z along c is again parallel.

For this we let c̃ : I → Q̃ be a horizontal lift of c with respect to π . Then we have by (a)

RQ(X,Y )Z = 〈Y,Z〉X − 〈X,Z〉Y
+ 〈JY,Z〉JX − 〈JX,Z〉JY − 2 · 〈JX, Y 〉JZ
+ 〈Y,AQξ◦ecZ〉A

Q
ξ◦ecX − 〈X,AQξ◦ecZ〉A

Q
ξ◦ecY

+ 〈Y, JAQξ◦ecZ〉JA
Q
ξ◦ecX − 〈X, JAQξ◦ecZ〉JA

Q
ξ◦ecY .
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Because AQ is parallel by Theorem 1.18, ξ ◦ c̃ is a parallel vector field along c by Lemma 1.17,

and J and 〈·, ·〉 are parallel tensor fields, it follows that RQ(X,Y )Z is parallel. �

1.23 Proposition. The Ricci tensor field ricQ of Q of type (0,2) is given by

∀ p ∈ Q, v,w ∈ TpQ : ricQ(v, w) = 2m · 〈v, w〉 .

In particular, Q is an Einstein manifold.

Proof. Let p ∈ Q and v, w ∈ TpQ be given. Fix ζ ∈⊥1
pQ and put A := AQζ . By Propo-

sition 1.15 there exists z ∈ π−1({p}) with ζ = ξ(z) and therefore Theorem 1.16 shows that

A is a conjugation on the unitary space TpQ . Choose an orthonormal basis (a1, . . . , am) of

V (A) = Eig(A, 1) , then Proposition 1.9 shows that (a1, . . . , am, Ja1, . . . , Jam) is an orthonor-

mal basis of (TpQ, 〈·, ·〉) . Therefore, we have

ricQ(v, w) = tr(u 7→ RQ(u, v)w)

=
m∑

k=1

(
〈RQ(ek, v)w, ek〉 + 〈RQ(Jek, v)w, Jek〉

)
. (1.34)

We now calculate the summands via Equation (1.29): A and JA are self-adjoint, whereas J

is skew-adjoint. Therefore, we obtain for any k ∈ {1, . . . ,m} :

〈RQ(ek, v)w, ek〉 = 〈v, w〉 · 〈ek, ek〉︸ ︷︷ ︸
=1

−〈ek, w〉 · 〈v, ek〉

+ 〈Jv,w〉 · 〈Jek, ek〉︸ ︷︷ ︸
=0

−〈Jek, w〉 · 〈Jv, ek〉︸ ︷︷ ︸
=−〈v,Jek〉

−2 · 〈Jek, v〉 · 〈Jw, ek〉︸ ︷︷ ︸
=−〈w,Jek〉

+ 〈v,Aw〉 · 〈Aek, ek〉︸ ︷︷ ︸
=1

−〈ek, Aw〉︸ ︷︷ ︸
=〈w,ek〉

· 〈Av, ek〉︸ ︷︷ ︸
=〈v,ek〉

+ 〈v, JAw〉 · 〈JAek, ek〉︸ ︷︷ ︸
=0

−〈ek, JAw〉︸ ︷︷ ︸
=〈w,Jek〉

· 〈JAv, ek〉︸ ︷︷ ︸
=〈v,Jek〉

= 〈v, w〉 − 2 · 〈v, ek〉 · 〈w, ek〉 + 2 · 〈v, Jek〉 · 〈w, Jek〉 + 〈v,Aw〉 , (1.35)

and by an analogous calculation

〈RQ(Jek, v)w, Jek〉 = 〈v, w〉 + 2 · 〈v, ek〉 · 〈w, ek〉 − 2 · 〈v, Jek〉 · 〈w, Jek〉 − 〈v,Aw〉 . (1.36)

Plugging Equations (1.35) and (1.36) into Equation (1.34) gives the stated result. �
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1.24 Remarks. (a) Proposition 1.23 has interesting consequences:

• Myers’s theorem (see [Mye35], Theorem 2, p. 42) shows that the diameter of the

compact manifold Q is ≤
√

1 − 1
2m · π . As we will see in Proposition 5.20, the

diameter of Q is in fact π/
√

2 .

• By a result of Kobayashi ([Kob61], Theorem A), any compact Kähler manifold with

positive definite Ricci tensor, and hence Q , is simply connected.

• It should also be mentioned that it is possible to retrieve some results of this chapter

from Proposition 1.23 by using results of Smyth’s paper [Smy67]: Proposition 6

of [Smy67] shows that (AQζ )2 = idTpQ holds for any ζ ∈⊥1
pQ , and Theorem 2 of

the same paper shows that any complex hypersurface of IP(V) which is an Einstein

manifold, hence in particular Q , is a Riemannian locally symmetric space.

(b) Smyth has classified those complete complex hypersurfaces of the complex space forms

which are Einstein manifolds ([Smy67], Theorem 3); for m ≥ 2 , the (symmetric) complex

quadrics are the only such hypersurfaces of IP(V) aside from the projective hyperplanes.
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Chapter 2

CQ-spaces

In two places of the previous chapter, “circles of conjugations” {λA |λ ∈ S1 } (where A is a

conjugation) occur: First, Proposition 1.10 shows that there is an one-to-one correspondence

between the set of such circles of conjugations on a unitary space V and the set of symmetric

complex quadrics in IP(V) . Second, we saw in Theorem 1.16 that if Q is a complex quadric,

then for any p ∈ Q , the set A(Q, p) := {AQζ | ζ ∈⊥1
p(Q ↪→ IP(V)) } of shape operators is a circle

of conjugations on the unitary space TpQ .

Because of these two applications, circles of conjugations (which we will call CQ-structures from

here on) play a fundamental role in the present approach to the study of complex quadrics.

Indeed the structure of the curvature tensor of Q in some p ∈ Q is completely described by

the inner product of TpQ , its complex structure, and the CQ-structure A(Q, p) induced by the

shape operator. Therefore it seems reasonable to call these data the “fundamental geometric

entities” of TpQ .

The concept of a CQ-space was introduced by H. Reckziegel in the article [Rec95]; also in

this article, the importance of CQ-structures for the study of complex quadrics is first realized.

[Rec95] is an important source for the present chapter; in particular the most important concepts

involved in the study of CQ-spaces, namely those of the space V (A) = Eig(A, 1) corresponding

to a conjugation A : V → V , of CQ-automorphisms, principal vectors and adapted bases, of

isotropic vectors, of the characteristic angle introduced in Section 2.5, of the corresponding orbits

Mt of the action of the group of CQ-automorphisms on S(V) , and of the curvature tensor of a

CQ-space have already been introduced and discussed there.

In the present chapter, we explore the algebraic properties of CQ-structures on a general unitary

space V .

Let V be an n-dimensional unitary space, whose (complex) inner product we denote by 〈·, ·〉C .

We also regard V as a 2n-dimensional euclidean space via the real inner product 〈·, ·〉IR :=

Re(〈·, ·〉C) . In the latter regard, V is equipped with the orthogonal complex structure J : V →
V, v 7→ i · v . As was already mentioned in the Introduction, 〈·, ·〉C can be reconstructed from

35
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〈·, ·〉IR and J by the equation

∀v, w ∈ V : 〈v, w〉C = 〈v, w〉IR + i · 〈v, Jw〉IR . (2.1)

This equation also shows that for any totally-real linear subspace W ⊂ V , the restriction of

〈·, ·〉C to W ×W attains only real values and is equal to 〈·, ·〉IR on that space.

2.1 Conjugations

First, we call Definition 1.6 in mind again:

2.1 Definition. A conjugation on V is an anti-linear map A : V → V which is self-adjoint and

orthogonal with respect to 〈·, ·〉IR . If A is a conjugation on V , we put V (A) := Eig(A, 1) and

for any v ∈ V

ReA v := 1
2(Av + v) and ImA v := 1

2J(Av − v) .

We denote the set of conjugations on V by Con(V) .

2.2 Remarks. (a) An IR-linear map A : V → V is both orthogonal and self-adjoint with respect

to 〈·, ·〉IR if and only if A is a reflection in the linear subspace Eig(A, 1) of V . If this

is the case, then the additional hypothesis that A is anti-linear causes Eig(A, 1) to be a

maximal totally real subspace of V .

(b) A conjugation A on V is already uniquely determined by the specification of the maximal

totally real subspace V (A) of V . Occasionally, a maximal totally real subspace of V is

called a real structure on V ; we see that the theory of unitary spaces equipped with a

conjugation A is equivalent to the theory of unitary spaces equipped with a real structure

V (A) .

2.3 Proposition. Let A : V → V be a conjugation, v, w ∈ V and λ ∈ S1 .

(a) V (A) and Eig(A,−1) = JV (A) are n-dimensional totally real subspaces of V and we

have V = V (A) 	 JV (A) .

(b) A2 = idV .

(c) 〈v,Aw〉C = 〈Av,w〉C = 〈w,Av〉C .

(d) 〈Av,Aw〉C = 〈v, w〉C .

(e) ReA v, ImA v ∈ V (A) and v = ReA v + J ImA v ; the maps ReA, ImA : V → V (A) are

IR-linear and satisfy ReA(Jv) = − ImA v , ImA(Jv) = ReA v , ReA(Av) = ReA v and

ImA(Av) = − ImA(v) .

(f) ( v ∈ V (A) ⇐⇒ ImA v = 0 ) and ( v ∈ JV (A) ⇐⇒ ReA v = 0 ) .
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(g) λ2A is another conjugation on V and we have V (λ2A) = λV (A), Reλ2A v =

λReA(λv) and Imλ2A v = λ ImA(λv) .

(h) For an IR-linear map Ã : V → V , any two of the following properties imply the third: (i) Ã

orthogonal with respect to 〈·, ·〉IR , (ii) Ã self-adjoint with respect to 〈·, ·〉IR , (iii) Ã2 = idV .

Proof. For (a). This has already been shown in Proposition 1.9. For (b). This is an immediate

consequence of the fact that A is real diagonalizable and its only eigenvalues are 1 and −1

(see Proposition 1.9). For (c). The second equality sign is obvious; for the first, we have by

Equation (2.1):

〈v,Aw〉C = 〈v,Aw〉IR+i〈v, JAw〉IR = 〈v,Aw〉IR−i〈v,AJw〉IR = 〈Av,w〉IR−i〈Av, Jw〉IR = 〈Av,w〉C .

For (d). This is an immediate consequence of (b) and (c). For (e). Obvious. For (f). We have

ImA(v) = 0 ⇐⇒ 1
2J(Av − v) = 0 ⇐⇒ Av = v ⇐⇒ v ∈ Eig(A, 1) = V (A) ;

the second equivalence is shown the same way. For (g). λ2A ∈ Con(V) is obvious. We have

v ∈ V (λ2A) ⇔ λ2Av = v ⇔ λA(λv) = v ⇔ A(λv) = λv ⇔ λv ∈ V (A) ⇔ v ∈ λV (A)

and

Reλ2A v = 1
2(λ2Av + v) = λ · 1

2(λAv + λv) = λ · 1
2(A(λv) + λv) = λ · ReA(λv) ;

the equality for Imλ2A v is shown analogously. For (h). If Ã satisfies (i) and (ii), it is real

diagonalizable and 1 and −1 are the only possible eigenvalues of Ã , which shows (iii). If (i)

and (iii) holds, then we have for any v, w ∈ V : 〈Ãv, w〉IR = 〈Ã2v, Ãw〉IR = 〈v, Ãw〉IR , which

shows (ii). If (ii) and (iii) holds, we have 〈Ãv, Ãw〉IR = 〈v, Ã2w〉IR = 〈v, w〉IR , which shows the

validity of (i). �

2.4 Proposition. Let A : V → V be a conjugation, v, v ′ ∈ V and λ ∈ S1 , represented as λ = a+bi

with a, b ∈ IR . Abbreviate x := ReA v, y := ImA v, x
′ := ReA v

′, y′ := ImA v
′ .

(a) The inner products 〈·, ·〉C and 〈·, ·〉IR coincide on V (A) × V (A) .

(b) (i) 〈v, v′〉C = 〈x, x′〉IR + 〈y, y′〉IR + i · (〈y, x′〉IR − 〈x, y′〉IR)

(ii) 〈v, Jv′〉C = 〈y, x′〉IR − 〈x, y′〉IR − i · (〈x, x′〉IR + 〈y, y′〉IR)

(iii) ‖v‖2 = ‖x‖2 + ‖y‖2

(c) (i) 〈v,Av′〉C = 〈x, x′〉IR − 〈y, y′〉IR + i · (〈x, y′〉IR + 〈y, x′〉IR)

(ii) 〈v, JAv′〉C = 〈x, y′〉IR + 〈y, x′〉IR − i · (〈x, x′〉IR − 〈y, y′〉IR)

(iii) 〈v,Av〉C = ‖x‖2 − ‖y‖2 + 2i · 〈x, y〉IR
(iv) 〈v, JAv〉C = 2〈x, y〉IR − i · (‖x‖2 − ‖y‖2)

Proof. For (a). As V (A) is totally real in V , we have 〈x, Jy〉IR = 0 for any x, y ∈ V (A) . The

statement therefore follows from Equation (2.1). For (b) and (c). These equations are shown

by elementary calculations. �
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2.2 CQ-spaces and their isomorphisms

2.5 Definition. Let V be a unitary space and A : V → V be a conjugation. Then we call the

“circle of conjugations” S1 ·A := {λA |λ ∈ S1 } a CQ-structure on V . If A is a CQ-structure

on V , we call (V,A) or (when there is no doubt about the intended CQ-structure) simply V a

CQ-space.

2.6 Example. The usual conjugation A0 : Cn → Cn, v 7→ v on Cn also is is a conjugation in the

sense of Definition 2.1 on this unitary space. Therefore A0 := S1 ·A0 is a CQ-structure on Cn .

We call A0 the standard conjugation and A0 the standard CQ-structure of Cn .

2.7 Definition. Let (V,A) be a CQ-space.

(a) A vector v ∈ V is called A-principal if there exists A ∈ A so that v ∈ V (A) holds.

(b) An n-tuple (b1, . . . , bn) of vectors of V is called an A-adapted basis of V , if there exists

an A ∈ A so that (b1, . . . , bn) is an orthonormal basis of V (A) .

2.8 Remark. In the case dim V = 1 all vectors of V are A-principal.

2.9 Proposition. (a) v ∈ V is A-principal if and only if for some (and then for every) A ∈ A

there exists λ ∈ S1 so that Av = λv holds.

(b) An n-tuple (b1, . . . , bn) of vectors of V is an A-adapted basis of V if and only if it is a

unitary basis of V and there exists A ∈ A so that bk ∈ V (A) holds for all k ∈ {1, . . . , n} .

Proof. For (a). Let v ∈ V and A ∈ A be given. Then, we have

v is A-principal ⇐⇒ ∃λ ∈ S1 : v ∈ V (λA)

⇐⇒ ∃λ ∈ S1 : λAv = v ⇐⇒ ∃λ ∈ S1 : Av = λv .

For (b). Proposition 2.4(a) shows that 〈·, ·〉C and 〈·, ·〉IR coincide on V (A) × V (A) for every

A ∈ A ; we also have V = V (A) 	 JV (A) . Via these two observations, the statement follows

from Definition 2.7(b). �

2.10 Definition. Suppose (V,A) and (V′,A′) are CQ-spaces.

(a) We call a C-linear isometry B : V → V′ a CQ-isomorphism, if

∀A ∈ A : B ◦A ◦B−1 ∈ A′

holds. In the case (V′,A′) = (V,A) , we speak of a CQ-automorphism. We denote the set

of CQ-automorphisms of (V,A) by Aut(A) .
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(b) We call a C-linear isometry B : V → V a strict CQ-automorphism, if

∀A ∈ A : B ◦ A = A ◦ B

holds. We denote the set of strict CQ-automorphisms of (V,A) by Auts(A) .

(c) An anti-linear map B : V → V′ is called a CQ-anti-isomorphism, if for every A′ ∈ A′ ,
the C-linear map A′ ◦ B is a CQ-isomorphism. In the case (V′,A′) = (V,A) , we speak

of a CQ-anti-automorphism. We denote the set of CQ-anti-automorphisms of (V,A) by

Aut(A) .

(d) A complex linear subspace U ⊂ V is called a CQ-subspace of (V,A) if U is invariant

under some (and then, under every) A ∈ A . In this case U canonically becomes a CQ-

space with the CQ-structure {A|U |A ∈ A } , which we call the induced CQ-structure of

U .

(e) For any subset M of V , we call the smallest CQ-subspace of V which contains M the

CQ-subspace generated by M or the CQ-span of M . We denote this space by spanAM .

(f) An injective C-linear map ι : V → V′ is called a CQ-embedding if ι(V) is a CQ-subspace

of V′ and ι : V → ι(V) is a CQ-isomorphism.

2.11 Examples. Let (V,A) be a CQ-space. Then the map V → V, v 7→ λ·v is a CQ-automorphism

for any λ ∈ S1 ; it is a strict CQ-automorphism if and only if λ ∈ {±1} holds. The conjugations

A ∈ A are CQ-anti-automorphisms. In the case dim V = 1 we have Aut(A) = U(V) and

Aut(A) = U(V) .

2.12 Remarks. (a) To verify that some C-linear isometry B : V → V′ is a CQ-isomorphism of

the CQ-spaces (V,A) and (V′,A′) , it suffices to check B ◦ A ◦ B−1 ∈ A′ for a single

A ∈ A . Similarly, to verify that B ∈ U(V) is a strict CQ-automorphism, it suffices to

check B ◦ A = A ◦B for a single A ∈ A .

(b) Aut(A)∪Aut(A) is a subgroup of the (abstract) group of IR-linear transformations of V .

Aut(A) is a normal subgroup of Aut(A) ∪ Aut(A) and contained in U(V) ; in Proposi-

tion 2.17, we will see that Aut(A) is in fact a Lie subgroup of U(V) . Aut(A) is a coset

of Aut(A) in Aut(A) ∪ Aut(A) .

2.13 Proposition. A linear subspace U of a CQ-space (V,A) is a complex-k-dimensional CQ-

subspace if and only if there exists A ∈ A and a real-k-dimensional subspace W ⊂ V (A) so

that U = W 	 JW holds. If U is a CQ-subspace, then this representation can be achieved for

every A ∈ A .

Proof. Suppose that U is a k-dimensional CQ-subspace of V , let A ∈ A be given and put

W := U ∩V (A) . We will show that U = W 	 JW holds with this choice of W ; it then follows

that W is of real dimension k .

W 	 JW ⊂ U holds simply because of W ⊂ U and U is a complex linear subspace. For the

converse inclusion, let v ∈ U be given. Because U is a CQ-subspace of V , we have x := ReA v ∈
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U ∩ V (A) = W and y := ImA v ∈ U ∩ V (A) = W . This shows that v = x + Jy ∈ W 	 JW

holds.

Conversely, if U is a linear subspace of V so that U = W 	 JW holds, where W is a linear

subspace of V (A) for some A ∈ A , then U is clearly A-invariant and therefore also invariant

under every A′ ∈ A . Hence, U is a CQ-subspace of V . �

2.14 Proposition. Suppose (V,A) and (V′,A′) are n-dimensional CQ-spaces. For a C-linear map

B : V → V′ the following statements are equivalent:

(a) B is a CQ-isomorphism.

(b) B maps every A-adapted basis onto an A′-adapted basis.

(c) There exists an A-adapted basis which is mapped by B onto an A′-adapted basis.

Proof. For (a) ⇒ (b). Obvious. For (b) ⇒ (c). Trivial. For (c) ⇒ (a). The hypothesis (c)

means that there exist A ∈ A , A′ ∈ A′ and an orthonormal basis (b1, . . . , bn) of V (A) so that

(Bb1, . . . , Bbn) is an orthonormal basis of V (A′) . In particular, we have B(V (A)) = V (A′)
and therefore also B(JV (A)) = JV (A′) . It follows that B ◦A = A′ ◦B holds. Now, if λA ∈ A

is an arbitrary element of A ( λ ∈ S1 ), we have

B ◦ (λA) ◦ B−1 = λ ·B ◦ A ◦ B−1 = λ ·A′ ∈ A′

and therefore B is a CQ-isomorphism. �

2.15 Proposition. Let (V,A) and (V′,A′) be CQ-spaces, A ∈ A , A′ ∈ A′ and L : V (A) → V (A′)
an IR-linear map. Then there exists one and only one C-linear map LC : V → V′ and one and

only one anti-linear map LC : V → V′ so that

LC|V (A) = LC|V (A) = L (2.2)

holds, and these maps satisfy

LC ◦ A = A′ ◦ LC and LC ◦ A = A′ ◦ LC . (2.3)

Furthermore, we have detC(LC) = detIR(L) and the following relationships between “qualities”

of L and LC , LC :

If L is ... , then LC is ... and LC is ... .

an IR-linear isomorphism a C-linear isomorphism an anti-linear isomorphism

an IR-linear isometry a CQ-isomorphism a CQ-anti-isomorphism

self-adjoint Hermitian —

skew-adjoint skew-Hermitian —

We call LC resp. LC the complexification resp. the anti-complexification of L .
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Proof. Because we have V = V (A)	JV (A) , there can be at most one map LC resp. LC which

satisfies (2.2). To prove their existence, we define LC and LC by

∀v ∈ V :
(
LC(v) := L(ReA v) + JL(ImA v) and LC(v) := L(ReA v) − JL(ImA v)

)
. (2.4)

It is obvious that the maps LC and LC so defined are IR-linear, and that they satisfy Equa-

tion (2.2). Furthermore, for every v ∈ V we have (see Proposition 2.3(e))

LC(Jv) = L(ReA(Jv)) + JL(ImA(Jv)) = −L(ImA v) + JL(ReA v) = J(LC(v)) ,

hence LC is in fact C-linear; an analogous calculation shows that LC is anti-linear. We also

have

LC(Av) = L(ReA(Av)) + JL(ImA(Av)) = L(ReA v) − JL(ImA v) = A′(LC(v)) ,

whence the equation for LC in (2.3) follows; the equation for LC is shown the same way.

To show detC(LC) = detIR(L) , we fix orthonormal bases B := (b1, . . . , bn) of V (A) and B′ :=

(b′1, . . . , b
′
n′) of V (A′) . Then B and B′ are also unitary bases of V resp. V′ , and the same

matrix which represents the IR-linear map L with respect to the orthonormal bases B and B ′

also represents the C-linear map LC with respect to the unitary bases B and B ′ . Consequently,

detC(LC) = detIR(L) holds.

We now suppose that L is an IR-linear isomorphism and show that then LC is a C-linear

isomorphism; the proof that LC is an anti-linear isomorphism runs analogously. The fact

that L is a linear isomorphism implies in particular that dimV (A) = dimV (A′) and hence

dim V = dimV′ holds. Therefore, it suffices to show that the kernel of LC is trivial. Let v ∈ V
be given so that

0 = LC(v) = L(ReA v) + JL(ImA v)

holds. Because we have V (A′) ⊥ JV (A′) this equation implies L(ReA v) = L(ImA v) = 0 and

thus, because L is injective, ReA v = ImA v = 0 , hence v = 0 .

If L is an IR-linear isometry, then LC transforms any orthonormal basis of V (A) into an

orthonormal basis of V (A′) and therefore is a CQ-isomorphism by Proposition 2.14, (c) ⇒ (a).

Also, LC = A′ ◦ LC is then a CQ-anti-isomorphism.

The statement that L being self-adjoint (skew-adjoint) causes LC to be Hermitian (skew-

Hermitian) is proved by a direct calculation via Equations (2.4) and Proposition 2.4(b)(i).

�

2.16 Corollary. Let (V,A) and (V′,A′) be CQ-spaces of dimension n resp. n′ . Then there exists

a CQ-isomorphism B : V → V′ if and only if n = n′ holds.

Proof. Because any CQ-isomorphism is in particular an isomorphism of linear spaces, n = n ′

is a necessary condition for the existence of a CQ-isomorphism B : V → V′ . Conversely, we

suppose that n = n′ holds and fix A ∈ A and A′ ∈ A′ ; then V (A) and V (A′) are both

n-dimensional euclidean spaces. Therefore there exists a linear isometry L : V (A) → V (A ′) .

Proposition 2.15 shows that the complexification of L is a CQ-isomorphism V → V ′ . �
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2.17 Proposition. Let (V,A) be an n-dimensional CQ-space and A ∈ A .

(a) Auts(A) is a compact Lie subgroup of U(V) and

Ψs : O(V (A)) → Auts(A), L 7→ LC

is an isomorphism of Lie groups with Ψ−1
s (B) = B|V (A) for every B ∈ Auts(A) . Con-

sequently, the dimension of Auts(A) is n(n−1)
2 and Auts(A) has exactly two connected

components. For B ∈ Auts(A) , we have detC(B) = detIR(B|V (A)) ∈ {±1} and

B ∈ Auts(A)0 ⇐⇒ det
C
(B) = 1 .

The Lie algebra auts(A) ⊂ u(V) of Auts(A) is given by4

auts(A) = {B ∈ End−(V) |B ◦ A = A ◦B } (with A ∈ A )

= {LC |L ∈ o(V (A)) } . (2.5)

In the case n ≥ 2 , let us denote by 〈〈·, ·〉〉V (A) resp. 〈〈·, ·〉〉V the usual inner product5 on

End(V (A)) resp. on End(V) ; then the Killing form κ of auts(A) is given by

∀X,Y ∈ auts(A) : κ(X,Y ) = −(n− 2) · 〈〈X|V (A), Y |V (A)〉〉V (A) = −(n− 2) · 〈〈X,Y 〉〉V .

(2.6)

(b) Aut(A) is a compact Lie subgroup of U(V) and

Ψ : S1 × O(V (A)) → Aut(A), (λ,L) 7→ λ · LC

is a two-fold covering map of Lie groups with kerΨ = {±(1, idV (A))} . Consequently, the

dimension of Aut(A) is 1+ n(n−1)
2 . Moreover, Aut(A) is connected if n is odd, whereas

if n is even Aut(A) has exactly two connected components. In both cases Aut(A)0 =

Ψ(S1 × SO(V (A)) holds. The Lie algebra aut(A) of Aut(A) is given by

aut(A) = {α J +X |α ∈ IR, X ∈ auts(A) } . (2.7)

Proof. For (a). Consider the differentiable map

f : U(V) → U(V), B 7→ B ◦ A ◦ B−1 ◦ A−1 .

We have Auts(A) = f−1({idV}) and therefore the abstract group Auts(A) is a closed subset

of the compact Lie group U(V) and hence a compact Lie subgroup of U(V) (see [Var74],

Theorem 2.12.6, p. 99).

4Here, as always, we identify u(V) and o(V (A)) with the Lie algebra of skew-Hermitian endomorphisms on

V resp. of skew-adjoint endomorphisms on V (A) ; see the Introduction.
5With respect to any orthonormal basis (b1, . . . , bn) of V (A) , the inner product on End(V (A)) is given by

〈〈B1, B2〉〉V (A) =
Pn

k=1〈B1bk, B2bk〉IR for any B1, B2 ∈ End(V (A)) . Analogously, with respect to any unitary

basis (b1, . . . , bn) of V , the inner product on V is given by 〈〈B1, B2〉〉V =
Pn

k=1〈B1bk, B2bk〉C for any B1, B2 ∈

End(V) .
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Ψs in fact maps into Auts(A) by Proposition 2.15 and it obviously is a homomorphism of

abstract groups. For every L ∈ O(V (A)) we have (LC)|V (A) = L ; conversely for every

B ∈ Auts(A) we have B|V (A) ∈ O(V (A)) and therefore the uniqueness statement for LC in

Proposition 2.15 shows that (B|V (A))C = B holds. Therefore Ψs is bijective and Ψ−1
s is as

given in the proposition.

Ψs is differentiable, as the following argument shows: We fix an orthonormal basis B :=

(b1, . . . , bn) of V (A) , then B also is a unitary basis of V . If we represent a given L ∈ O(V (A))

as a matrix with respect to the orthonormal basis B of V (A) , then the same matrix represents

LC ∈ Auts(A) with respect to the unitary basis B of V . Therefore the homomorphism Ψs is

represented as a map of matrices with respect to the basis B simply by the inclusion map. It

follows that Ψs is differentiable, hence an isomorphism of Lie groups, and we also see that its

linearization is given by

(Ψs)L : o(V (A)) → auts(A), X 7→ XC .

In particular, we have auts(A) = (Ψs)L(o(V (A))) , whence Equation (2.5) follows.

It also follows from the above matrix consideration that detC(LC) = detIR(L) ∈ {±1} holds for

every L ∈ O(V (A)) .

For Equation (2.6): Let us denote the Killing form of o(V (A)) by κo ; as is well-known,

∀L1, L2 ∈ o(V (A)) : κo(L1, L2) = −(n− 2) · 〈〈L1, L2〉〉V (A)

holds (see for example [IT91], Example II.2.4, p. 60). Because (Ψs)
−1
L : auts(A) →

o(V (A)), X 7→ X|V (A) is an isomorphism of Lie algebras, it preserves the Killing forms of

the Lie algebras involved, whence the first equals sign in (2.6) follows. Moreover, if we again

consider an orthonormal basis B := (b1, . . . , bn) of V (A) , we have for any X,Y ∈ auts(A) :

〈Xbk, Y bk〉C = 〈Xbk, Y bk〉IR ∈ IR because X and Y leave the totally real subspace V (A)

of V invariant. Because B also is a unitary basis of V , we therefore have 〈〈X,Y 〉〉V =

〈〈X|V (A), Y |V (A)〉〉V (A) , whence the second equals sign in (2.6) follows.

The remaining statements about Auts(A) follow from the corresponding well-known facts about

O(V (A)) .

For (b). We have Aut(A) = f−1({λ · idV |λ ∈ S1 }) , therefore the abstract subgroup Aut(A) is

a closed subset and hence a Lie subgroup of the compact Lie group U(V) .

For any (λ,L) ∈ S1×O(V (A)) we have Ψ(λ,L) = (λ idV)◦LC ∈ Aut(A) by Proposition 2.15 and

Example 2.11. Therefore the homomorphism of abstract groups Ψ in fact maps into Aut(A) ;

its differentiability follows from the differentiability of Ψs . To show that Ψ is surjective, let

B ∈ Aut(A) be given. Then we have A′ := B ◦A ◦B−1 ∈ A , and therefore, there exists λ ∈ S1

so that A′ = λ2 ·A holds. We have B ◦A = λ2A◦B and therefore (λB)◦A = A◦(λB) , whence

λB ∈ Auts(A) follows. We thus have (λB)|V (A) ∈ O(V (A)) and Ψ(λ, (λB)|V (A)) = B .

Next we show

ker Ψ = {±(1, idV (A))} ; (2.8)



44 Chapter 2. CQ-spaces

it follows that Ψ is a two-fold covering map of Lie groups. The inclusion “⊃” of Equation (2.8)

is obvious. Conversely, let (λ,L) ∈ S1 × O(V (A)) be given so that idV = Ψ(λ,L) = λ · LC

holds. Then we have in particular λV (A) = V (A) and thus (note that V (A) 6= {0} is totally

real) λ ∈ {1,−1} , whence LC = λ idV follows. Thus we have shown (λ,L) = ±(1, idV (A)) ,

completing the proof of Equation (2.8).

It follows that we have

dimAut(A) = dim(S1 × O(V (A))) = 1 + n(n−1)
2 .

To investigate the connectedness of Aut(A) , we note that G := S1 ×O(V (A)) has exactly two

connected components, namely G0 = S1×SO(V (A)) and S1×{L ∈ O(V (A)) | detL = −1 } =:

G1 . Also, we have as a trivial consequence of Equation (2.8):

∀ (λ1, L1), (λ2, L2) ∈ G : ( Ψ(λ1, L1) = Ψ(λ2, L2) ⇐⇒ (λ2, L2) = ±(λ1, L1) ) . (2.9)

In the case of odd n , we have det(−L) = −detL for L ∈ O(V (A)) , therefore Equation (2.9)

shows that every given B ∈ Aut(A) has pre-images under Ψ in both connected components

of G . It follows that Ψ|G0 : G0 → Aut(A) is an isomorphism of Lie groups and therefore

Aut(A) is connected. On the other hand, in the case of even n , we have det(−L) = detL for

L ∈ O(V (A)) , therefore Equation (2.9) shows that both pre-images of a given B ∈ Aut(A) are

contained in the same connected component of G . Therefore, G0 and G1 are mapped by Ψ

onto disjoint, non-empty, connected, open subsets of Aut(A) which together cover all of Aut(A) .

This shows that Aut(A) has exactly two connected components, namely Ψ(G0) = Aut(A)0 and

Ψ(G1) .

Finally, if we identify the Lie algebra of the Lie group S1 ⊂ C with its “arrowed” tangent space−−→
T1S1 = iIR , the linearization of Ψ is given by

ΨL : iIR ⊕ o(V (A)) → aut(A), (iα,X) 7→ αJ +XC .

Because Ψ is a covering map of Lie groups, we have aut(A) = ΨL(IR⊕ o(V (A)) , and therefore

Equation (2.7) follows. �

2.18 Proposition. Let (V,A) be a CQ-space, A ∈ A , and

β : V × V → C, (v, w) 7→ 〈v,Aw〉C

the non-degenerate, symmetric bilinear form induced by A . We consider the subgroups

O(V, β) := {B ∈ GL(V) | ∀v, w ∈ V : β(Bv,Bw) = β(v, w) }
and SO(V, β) := {B ∈ O(V, β) | det(B) = 1 }

of GL(V) . Then we have

(a) Auts(A) = U(V) ∩ O(V, β) .

(b) Auts(A)0 = U(V) ∩ SO(V, β) .
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Proof. For (a). Let B ∈ U(V) be given. Then we have for every v, w ∈ V

β(Bv,Bw) − β(v, w) = 〈Bv,ABw〉C − 〈v,Aw〉C = 〈Bv,ABw〉C − 〈Bv,BAw〉C
= 〈Bv, (A ◦ B −B ◦ A)w〉C .

This shows that B ∈ O(V, β) holds if and only if we have A◦B = B◦A and thus B ∈ Auts(A)0 .

For (b). This is a consequence of (a) and Proposition 2.17(a). �

2.3 Isotropic subspaces

Let (V,A) be an n-dimensional CQ-space.

2.19 Definition. (a) The elements of Q̂(A) ∪ {0} (with A ∈ A ) are called isotropic vectors of

the CQ-space (V,A) . In other words, v ∈ V is called isotropic if 〈v,Av〉C = 0 holds for

some (and then, for every) A ∈ A .

(b) A (real or complex) linear subspace W ⊂ V is called an isotropic subspace of the CQ-space

(V,A) if every w ∈W is isotropic in (V,A) .

2.20 Proposition. Let W ⊂ V be an isotropic subspace, A ∈ A and v, w ∈W . Then we have:

(a) 〈v,Aw〉C = 0 .

(b) 〈ReA v,ReA w〉IR = 〈ImA v, ImAw〉IR = 1
2〈v, w〉IR .

(c) 〈ReA v, ImAw〉IR = −〈ImA v,ReAw〉IR ; in particular 〈ReA v, ImA v〉IR = 0 .

(d) The “complex closure” Ŵ := W + JW also is an isotropic subspace of V .

(e) The IR-linear maps ReA |W : W → V (A) and ImA |W : W → V (A) are injective, and

the map τ := (ImA ◦(ReA |W )−1) : ReA(W ) → ImA(W ) is an IR-linear isometry so that

W = {x+ Jτx |x ∈ ReA(W ) } (2.10)

holds.

(f) In the situation of (e), W is a complex subspace if and only if ReA(W ) = ImA(W ) =: Y

holds and τ : Y → Y is a complex structure on Y . W is totally real if and only if

ReA(W ) ⊥ ImA(W ) holds.

(g) For every w ∈W , we have w+Aw ∈ V (A) , and if dimIRW = dimC V holds, then every

x ∈ V (A) can be obtained in this way.
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Proof. For (a). β : W × W → C, (v, w) 7→ 〈v,Aw〉C is a symmetric bilinear form. The

quadratic form corresponding to β vanishes because W is isotropic, and therefore we have for

any v, w ∈W : β(v, w) = 1
2 (β(v + w, v +w) − β(v, v) − β(w,w)) = 0 .

For (b) and (c). From Proposition 2.4(b)(i), we get

〈v, w〉IR = 〈ReA v,ReAw〉IR + 〈ImA v, ImAw〉IR , (2.11)

and from (a) we obtain by Proposition 2.4(c)(i)

0 = 〈v,Aw〉C = 〈ReA v,ReAw〉IR − 〈ImA v, ImA w〉IR + i · (〈ReA v, ImAw〉IR + 〈ImA v,ReAw〉IR)

and consequently

〈ReA v,ReAw〉IR = 〈ImA v, ImA w〉IR , (2.12)

〈ReA v, ImAw〉IR = −〈ImA v,ReAw〉IR . (2.13)

By combining Equations (2.11) and (2.12) we obtain (b), whereas Equation (2.13) proves (c).

For (d). Let v̂ ∈ Ŵ be given, say v̂ = v1 + Jv2 with v1, v2 ∈W . Then we have

〈v̂, Av̂〉C = 〈v1 + Jv2, Av1 − JAv2〉C = 〈v1, Av1〉C − 〈v1, JAv2〉C + 〈Jv2, Av1〉C − 〈Jv2, JAv2〉C
= 〈v1, Av1〉C − 〈v1, JAv2〉C − 〈v2, JAv1〉C − 〈v2, Av2〉C . (2.14)

The first and the fourth summand in (2.14) vanish because v1 and v2 are isotropic; the second

and the third summand vanish by (a), note that J ◦ A = i A ∈ A holds. Thus we have shown

〈v̂, Av̂〉C = 0 , and hence Ŵ is isotropic.

For (e). (b) shows that for v ∈ W either of the conditions ReA v = 0 and ImA v = 0 implies

v = 0 . Therefore the surjective IR-linear maps

R := (ReA |W ) : W → ReA(W ) and I := (ImA |W ) : W → ImA(W )

are linear isomorphisms, and consequently the linear map τ = I ◦ R−1 : ReA(W ) → ImA(W )

also is a linear isomorphism. τ satisfies Equation (2.10) and (b) shows that τ is a linear

isometry.

For (f). Let τ : ReA(W ) → ImA(W ) be the linear isometry from (e). Suppose that W is a

complex subspace and let x ∈ ReA(W ) be given. Then we have v := x+ J(τx) ∈W and thus

also Jv ∈W . Jv can be calculated in two different ways:

Jv = J(x+ J(τx)) = −τx+ Jx

= ReA(Jv) + Jτ(ReA(Jv)) ;

thus, we obtain

ReA(Jv) = −τx and τ(ReA(Jv)) = x , (2.15)

hence, we see that x = τ(ReA(Jv)) ∈ ImA(W ) holds. By varying x , we obtain ReA(W ) ⊂
ImA(W ) ; because ReA(W ) and ImA(W ) have the same dimension ( τ is an isomorphism
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between them), it follows that we have ReA(W ) = ImA(W ) =: Y . Equation (2.15) also shows

that τ(τx) = −τ(ReA(Jv)) = −x holds for x ∈ Y and therefore τ is a complex structure on

Y .

Conversely, we now suppose that τ is a complex structure on ReA(W ) = ImA(W ) =: Y and let

v ∈W be given, say v = x+ J(τx) with x ∈ ReA(W ) . Then, we also have τx ∈ ImA(W ) = Y

and therefore

W 3 τx+ Jτ(τx) = τx− Jx = −J(x+ J(τx)) = −Jv ,

hence Jv ∈W . This shows that W is a complex subspace of V .

To prove the characterization of totally-real isotropic subspaces, we calculate 〈v, Jw〉IR for

v, w ∈W . By Proposition 2.4(b)(ii) and part (c) of the present proposition, we obtain

〈v, Jw〉IR = 〈ImA v,ReAw〉IR − 〈ReA v, ImAw〉IR = (−2) · 〈ReA v, ImAw〉IR .

This equality shows that W is totally-real (meaning that 〈v, Jw〉IR = 0 holds for all v, w ∈W )

if and only if ReA(W ) ⊥ ImA(W ) holds (meaning that 〈ReA v, ImA w〉IR = 0 holds for all

v, w ∈W ).

For (g). Let w ∈W be given, then we have A(w+Aw) = Aw+w and therefore w+Aw ∈ V (A) .

By (a), we have A(W ) ⊥ W , and therefore the IR-linear map W → V (A), w 7→ w + Aw is

injective; in the case dimIRW = dimC V = dimIR V (A) it is therefore also surjective. �

2.21 Proposition. Let A ∈ A , Y1 ,Y2 be linear subspaces of V (A) and τ : Y1 → Y2 be a linear

isometry, and put

W := {x+ J(τx) |x ∈ Y1 } .

Furthermore, suppose that either of the following two cases holds:

(i) Y1 = Y2 =: Y and τ : Y → Y is a complex structure on Y .

(ii) Y1 ⊥ Y2 .

Then W is an isotropic subspace of V ; it is a complex subspace in case (i) and a totally real

subspace in case (ii).

Proof. Let v ∈ W be given, say v = x+ J(τx) with x ∈ Y1 . Both in case (i) and in case (ii)

we have 〈x, τx〉IR = 0 and therefore by Proposition 2.4(c)(iii)

〈v,Av〉C = ‖x‖2 − ‖τx‖2

︸ ︷︷ ︸
=‖x‖2

+ 2i 〈x, τx〉IR = 0 .

This shows that W is isotropic. The statements about W being complex resp. totally real were

already shown in Proposition 2.20(f). �
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2.22 Corollary. If W is an isotropic subspace of V , we have

dimIRW ≤
{
n for n even

n− 1 for n odd
, (2.16)

and equality can be attained. If W is a complex isotropic subspace, we have dimC W ≤
[
n
2

]
,

and equality can be attained.

Proof. Let an isotropic subspace W of V be given. Proposition 2.20(e) shows that dimIRW =

dimIR(ReA(W )) ≤ dimV (A) = n holds.

To complete the proof of the inequality (2.16), we have to show that dimIRW = n is possible only

if n is even. We suppose that there exists an isotropic subspace W of V with dimIRW = n .

By Proposition 2.20(d), Ŵ := W+JW also is an isotropic subspace of V . On the one hand, we

have W ⊂ Ŵ and therefore dimIR Ŵ ≥ dimIRW = n , on the other hand, we have dimIR Ŵ ≤ n

because Ŵ is isotropic. Therefore dimIR Ŵ = n holds. Because Ŵ is a complex linear space,

we see that n is even.

The inequality in the complex case is an immediate consequence of (2.16).

To show that equality can be attained in both inequalities, we fix A ∈ A and put Y := V (A)

in the case of even n , whereas we fix an (n− 1)-dimensional subspace Y of V (A) in the case

of odd n . In either case, Y is of even real dimension, so there exists an orthogonal complex

structure τ : Y → Y . Proposition 2.21 shows that W := {x + J(τx) |x ∈ Y } is a complex

isotropic subspace of V . We have 2 dimC W = dimIRW = dimIR Y , and therefore for this W

equality is attained in both inequalities of the proposition. �

2.4 Complex quadrics and CQ-spaces

Using the language of CQ-spaces, we can rephrase central results of Chapter 1 more succinctly.

Let V be a unitary space. Proposition 1.10 shows that there is a one-to-one correspondence

between CQ-structures on V and complex quadrics in IP(V) . If A is a CQ-structure on V ,

we therefore call the quadric Q(A) characterized by Q(A) = Q(A) for all A ∈ A the complex

quadric belonging to the CQ-structure A . Similarly, we define Q̂(A) and Q̃(A) .

2.23 Proposition. Let (V,A) be a CQ-space and A ∈ A . Then we have

(a) Q̂(A) = {x+ Jy |x, y ∈ V (A), ‖x‖ = ‖y‖ 6= 0, x ⊥ y }

(b) Q̃(A) = {x+ Jy |x, y ∈ V (A), ‖x‖ = ‖y‖ = 1√
2
, x ⊥ y }

Proof. For (a). Let v ∈ V \ {0} be given, say v = x+ Jy with x, y ∈ V (A) . Then we have by

Proposition 2.4(c)(iii):

v ∈ Q̂(A) ⇔ 〈v,Av〉C = 0 ⇔ ‖x‖2 −‖y‖2 + 2i 〈x, y〉 = 0 ⇔
(
‖x‖2 = ‖y‖2

v 6= 0

6= 0 and x ⊥ y
)
.

For (b). Because we have Q̃(A) = Q̂(A) ∩ S(V) , this follows from (a). �
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2.24 Remark. Proposition 2.23(b) shows that Q̃(A) is homothetic to the Stiefel manifold of or-

thonormal 2-frames in V (A) . Consequently, Q(A) is homothetic to the Grassmann manifold

of oriented 2-planes in V (A) .

2.25 Theorem. Let (V,A) be a CQ-space and p ∈ Q := Q(A) .

(a) The set of shape operators

A(Q, p) := {AQζ | ζ ∈⊥1
p(Q ↪→ IP(V)) }

is a CQ-structure on the unitary space TpQ . In the sequel, we will always regard TpQ as

a CQ-space in this way.

(b) Let z ∈ π−1({p}) (where π : S(V) → IP(V) is the Hopf fibration) and A′ ∈ A(Q, p) be

given. Then there exists one and only one A ∈ A so that the following diagram commutes:

−−→HzQ
A //

Φ
��

−−→HzQ

Φ
��

TpQ
A′

// TpQ .

Here the map Φ :
−−→HzQ→ TpQ is characterized by Φ(−→v ) = π∗v for all v ∈ HzQ .

We call A the lift of A′ at z .

Proof. For (a). We fix A ∈ A and consider the fields ξ and C constructed in Section 1.3 with

respect to this A . Then we have by Proposition 1.15

A(Q, p) = {AQξ(z) | z ∈ π−1({p}) } .

Fixing some z0 ∈ π−1({p}) , we further have by Propositions 1.15 and 1.14

A(Q, p) = {AQξ(λ z0) |λ ∈ S1 } = {AQ
λ−2 ξ(z0)

|λ ∈ S1 }

= {λ−2AQξ(z0) |λ ∈ S1 } = {λAQξ(z0) |λ ∈ S1 } .

Theorem 1.16 shows that AQξ(z0) is a conjugation on TpQ and therefore we see that A(Q, p) is

a CQ-structure on the unitary space TpQ .

For (b). We let z ∈ π−1({p}) and A′ ∈ A(Q, p) be given. As we saw in the proof of (a),

there exists λ ∈ S1 so that A′ = λAQξ(z) holds. If we replace A by λA ∈ A , then with this

conjugation the assertion (b) is fulfilled, see Diagrams (1.13) in Theorem 1.16. �

2.26 Theorem. Let (V,A) be a CQ-space. We put Q := Q(A) , denote by π : S(V) → IP(V) the

Hopf fibration, and for z ∈ Q̃(A) by HzQ ⊂ TzV the horizontal lift of Tπ(z)Q with respect to

π at z .
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Then HzQ is a CQ-subspace of the CQ-space (TzV,S1 · Cz) , where C is the endomorphism

field from Section 1.3. Moreover, we have

−−→HzQ = spanA{z}⊥ (2.17)

= { v ∈ V | ReA v, ImA v ⊥ ReA z, ImA z } (2.18)

(where A ∈ A is arbitrary), and π∗|HzQ : HzQ→ Tπ(z)Q is a CQ-isomorphism.

Proof. Let A ∈ A be given. We have spanA{z} = Cz ⊕ C(Az) , therefore (2.17) follows from

Proposition 1.13(b). It follows that
−−→HzQ is a CQ-subspace of V and hence, HzQ is a CQ-

subspace of (TzV,S1 · Cz) . To prove Equation (2.18), let v ∈ V be given. We abbreviate

x := ReA z , y := ImA z , vx := ReA v and vy := ImA v . Then we have by Proposition 1.13(b)

and Proposition 2.4(b)(i),(c)(i):

v ∈ −−→HzQ ⇐⇒ 〈v, z〉C = 〈v,Az〉C = 0

⇐⇒ 〈vx, x〉IR + 〈vy, y〉IR = 〈vy, x〉IR − 〈vx, y〉IR = 〈vx, x〉IR − 〈vy, y〉IR = 〈vx, y〉IR + 〈vy, x〉IR = 0

⇐⇒ 〈vx, x〉IR = 〈vy, y〉IR = 〈vy, x〉IR = 〈vx, y〉IR = 0 .

This proves Equation (2.18). Finally, the fact that π∗|HzQ : HzQ → Tπ(z)Q is a CQ-

isomorphism follows from Theorem 1.16. �

2.27 Proposition. Let (V,A) be a CQ-space of dimension n ≥ 2 . Then Q̃(A) (and therefore also

Q̂(A) ) is not contained in a proper IR-linear subspace of V .

Proof. It suffices to give an IR-basis of V which consists entirely of elements of Q̃(A) . For

this purpose, let us fix A ∈ A and an orthonormal basis (b1, . . . , bn) of V (A) . We put vk :=
1√
2
(bk + Jbk+1) for 1 ≤ k ≤ n− 1 and vn := 1√

2
(bn + Jb1) . Then (v1, . . . , vn, Jv1, . . . , Jvn) is

an IR-basis of V , which consists of elements of Q̃(A) by Proposition 2.23(b). �

2.5 The A-angle

In a unitary space V , all unit vectors are geometrically equivalent in the sense that the unitary

group of V acts transitively on S(V) . However, if we equip V with a CQ-structure, this

additional structure provides a differentiation of the “geometric quality” of unit vectors; this is

to say that Aut(A) does not act transitively on S(V) . As we will see, the orbit space of the latter

action can be parameterized by a number t ∈ [0, π4 ] ; the explicit parametrization of the orbit

space in this way is due to H. Reckziegel (see [Rec95], Proposition 3 and Proposition 4(g)).

We call the parameter t corresponding to such an orbit the A-angle of that orbit, or of its

elements.

Let (V,A) be an n-dimensional CQ-space with n ≥ 2 .
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2.28 Theorem. Let v ∈ V \ {0} be given.

(a) There is one and only one number ϕ(v) ∈ [0, π4 ] so that

∀A ∈ A : |〈v,Av〉C| = cos(2ϕ(v)) · ‖v‖2 (2.19)

holds. We call ϕ(v) the A-angle or characteristic angle of v .

(b) There exists A ∈ A so that

〈v,Av〉C is real and ≥ 0 . (2.20)

For ϕ(v) 6= π
4 , A is determined uniquely by (2.20); for ϕ(v) = π

4 , (2.20) holds for every

A ∈ A . If (2.20) holds for A ∈ A , we call A adapted to v .

(c) If A ∈ A is adapted to v , then we have

‖ReA v‖ = cosϕ(v) · ‖v‖ , ‖ ImA v‖ = sinϕ(v) · ‖v‖ and ReA v ⊥ ImA v . (2.21)

Therefore, there exists a representation

{
v = ‖v‖ (cosϕ(v) · x+ sinϕ(v) · Jy)
where x, y ∈ S(V (A)) and x ⊥ y holds.

(2.22)

We call any representation of v as in (2.22) a canonical representation of v ; it is uniquely

determined by v for 0 < ϕ(v) < π
4 .

Proof. Without loss of generality, we may suppose ‖v‖ = 1 .

For (a). First, we note

∀A ∈ A, λ ∈ S1 : 〈v, λAv〉C = λ · 〈v,Av〉C . (2.23)

This shows that |〈v,Av〉C | is independent of the choice of A ∈ A . Let us fix A ∈ A . Then

Cauchy/Schwarz’s inequality for a unitary space shows

|〈v,Av〉C| ≤ ‖v‖ · ‖Av‖ = 1 .

Therefore it follows that there is one and only one ϕ(v) ∈ [0, π4 ] so that Equation (2.19) holds.

For (b). If ϕ(v) = π
4 holds, then we have 〈v,Av〉C = 0 for every A ∈ A by Equation (2.19),

and therefore Equation (2.20) is satisfied for every A ∈ A .

Thus, we now suppose ϕ(v) 6= π
4 . We fix A0 ∈ A , then we have 〈v,A0v〉C 6= 0 by Equa-

tion (2.19). Put λ := 〈v,A0v〉C
|〈v,A0v〉C| ∈ S1 and A := λA0 ∈ A . Then Equation (2.23) shows

〈v,Av〉C = λ · 〈v,A0v〉C =
〈v,A0v〉C · 〈v,A0v〉C

|〈v,A0v〉C|
= |〈v,A0v〉C| > 0 .

Equation (2.23) also shows that A is the only element of A for which (2.20) holds.



52 Chapter 2. CQ-spaces

For (c). We have by Proposition 2.4(b)(iii)

‖ReA v‖2 + ‖ ImA v‖2 = ‖v‖2 = 1 . (2.24)

If A ∈ A is adapted to v , we also have by Proposition 2.4(c)(iii)

cos(2ϕ(v))
(2.19)
= |〈v,Av〉C |

(2.20)
= 〈v,Av〉C

= ‖ReA v‖2 − ‖ ImA v‖2 + 2i 〈ReA v, ImA v〉IR ,

and hence

‖ReA v‖2 − ‖ ImA v‖2 = cos 2ϕ(v) , (2.25)

〈ReA v, ImA v〉IR = 0 . (2.26)

Adding Equations (2.24) and (2.25) gives

2 〈ReA v,ReA v〉IR = 1 + cos(2ϕ(v)) = 2 (cosϕ(v))2

and therefore

‖ReA v‖ = cosϕ(v) . (2.27)

By subtracting Equation (2.25) from Equation (2.24), one similarly obtains

‖ ImA v‖ = sinϕ(v) . (2.28)

Equations (2.26), (2.27) and (2.28) prove (2.21).

For ϕ(v) 6= 0 , Equations (2.27) and (2.28) show that ReA v, ImA v 6= 0 holds, and therefore

we see that (2.22) holds for x := ReA v/‖ReA v‖ and y := ImA v/‖ ImA v‖ , and for no other

choice of x, y ∈ V (A) . For 0 < ϕ(v) < π
4 there is only one A ∈ A which is adapted to v and

therefore v then already determines the canonical representation uniquely. On the other hand,

if ϕ(v) = 0 holds, then we have ImA v = 0 by Equation (2.28), and thus v = ReA v ∈ V (A)

holds. Therefore (2.22) then is satisfied with x := v ∈ S(V (A)) and any y ∈ S(V (A)) which is

orthogonal to x . �

2.29 Proposition. Let v ∈ V \ {0} be given.

(a) v principal ⇐⇒ ϕ(v) = 0 .

(b) v isotropic ⇐⇒ ϕ(v) = π
4 .

Proof. For (a). If v is principal, there exists A ∈ A so that v ∈ V (A) holds. We have

〈v,Av〉C = 〈v, v〉C > 0 , so A is adapted to v . We have ImA v = 0 and therefore Theo-

rem 2.28(c) shows that sinϕ(v) = ‖ ImA v‖/‖v‖ = 0 holds. Consequently we have ϕ(v) = 0 .

Conversely, suppose that ϕ(v) = 0 holds and let A ∈ A be adapted to v . Then Theorem 2.28(c)

shows ‖ ImA v‖ = sinϕ(v) · ‖v‖ = 0 and therefore v = ReA v ∈ V (A) . Hence v is principal.

For (b). Let A ∈ A be fixed. Theorem 2.28(a) shows that we have

v isotropic ⇐⇒ 〈v,Av〉C = 0 ⇐⇒ cos(2ϕ(v)) = 0 ⇐⇒ ϕ(v) = π
4 . �
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2.30 Proposition. The map ϕ : V \ {0} → [0, π4 ], v 7→ ϕ(v) is continuous; its restriction to the set

N := { v ∈ V \ {0} | 0 < ϕ(v) < π
4 }

is differentiable. ϕ|(N ∩ S(V)) (and therefore also ϕ|N ) is a submersion.

Proof. We fix A ∈ A . Then Theorem 2.28(a) shows that we have

∀v ∈ V \ {0} : ϕ(v) = 1
2 arccos

( |〈v,Av〉C |
‖v‖2

)
.

All the maps composing ϕ in this representation are continuous, therefore ϕ also is. Fur-

thermore, the map V \ {0} → IR, v 7→ |〈v,Av〉C | is differentiable at those v ∈ V \ {0} with

〈v,Av〉C 6= 0 , i.e. ϕ(v) 6= π
4 , and arccos : [0, 1] → [0, π2 ] is differentiable on [0, 1[ . It follows

that ϕ|N is differentiable.

To show that the restriction of ϕ to N ∩ S(V) is a submersion, let v ∈ N ∩ S(V) be given

and A ∈ A be adapted to v , put t0 := ϕ(v) ∈ ]0, π4 [ , x := ReA(v)/ cos(t0) ∈ S(V (A)) and

y := ImA(v)/ sin(t0) ∈ S(V (A)) , and consider the differentiable curve

γ :]0, π4 [→ (N ∩ S(V)), t 7→ cos(t)x+ sin(t)Jy

with γ(t0) = v . An easy calculation using Theorem 2.28(a) shows that ϕ ◦ γ(t) = t holds for

every t ∈ ]0, π4 [ , and therefore we have
−−−−−−−→
Tvϕ(γ̇(t0)) = (ϕ ◦ γ)′(t0) = 1 . This shows ϕ to be

submersive at v . �

We now introduce a somewhat relaxed version of the concept of adapted-ness. Its main purpose

is to simplify the formulation of some statements in Section 2.7 (concerning the eigenspaces of

the Jacobi operator corresponding to the curvature tensor of the complex quadric), Section 4.4

(in the classification of totally geodesic submanifolds of the complex quadric) and Section 5.4

(concerning geodesics in the complex quadric).

2.31 Definition. A ∈ A is called weakly adapted to v ∈ V \ {0} if 〈v,Av〉C ∈ IR holds.

It is clear that if A is adapted to v , then it is also weakly adapted to v .

2.32 Proposition. Let v ∈ V \ {0} be given.

(a) For A ∈ A , the following statements are equivalent:

(i) A is weakly adapted to v .

(ii) Either A or −A is adapted to v .

(iii) ReA v ⊥ ImA v holds.
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(b) If A ∈ A is weakly adapted to v , there exists a representation

{
v = ‖v‖ (cos(t) · x+ sin(t) · Jy)
where t ∈ IR , x, y ∈ S(V (A)) and x ⊥ y holds.

(2.29)

We call any representation of v as in (2.29) a weak canonical representation of v .

Proof. For (a). For A ∈ A we have

A is weakly adapted to v ⇐⇒ 〈v,Av〉C ∈ IR

⇐⇒ ∃ ε ∈ {±1} : 〈v, εAv〉C ≥ 0

⇐⇒ ∃ ε ∈ {±1} : εA is adapted to v ,

and therefore the equivalence “(i) ⇔ (ii)” is shown. For the equivalence “(i) ⇔ (iii)” we note

that Proposition 2.4(c)(iii) shows that 〈v,Av〉C ∈ IR is equivalent to 〈ReA v, ImA v〉IR = 0 .

For (b). By (a), either A or −A is adapted to v . If A is adapted to v , then any canonical

representation of v with respect to A satisfies (2.29). On the other hand, if −A is adapted to

v , we consider a canonical representation of v with respect to −A :

{
v = ‖v‖ (cos ϕ(v) · x′ + sinϕ(v) · Jy′)
where x′, y′ ∈ S(V (−A)) and x′ ⊥ y′ holds.

Abbreviating ϕ := ϕ(v) , we thus have

v = ‖v‖ · (cos(ϕ− π
2 ) · Jy′ + sin(ϕ− π

2 )J(Jx′)) .

We therefore see that (2.29) is satisfied with t := ϕ − π
2 , x := Jy′ ∈ JV (−A) = V (A) and

y := Jx′ ∈ V (A) . �

2.33 Remark. The A-angle of a vector w ∈ S(V) can be read off any weak canonical representation

of w by the following fact: If A ∈ A and an orthonormal system (x, y) in V (A) are given,

then the function

ϕ(x,y) : IR → [0, π4 ], t 7→ ϕ( cos(t)x+ sin(t)Jy )

is π
2 -periodic and satisfies ϕ(x,y)(t) = |t| for |t| ≤ π

4 .

Proof. This is an immediate consequence of the fact that we have by Theorem 2.28(a)

cos(2ϕ(x,y)(t)) = |〈cos(t)x+ sin(t)Jy , cos(t)x− sin(t)Jy〉C| = | cos(t)2 − sin(t)2| = | cos(2t)| . �

2.34 Proposition. Let (V′,A′) be another CQ-space, B : V → V′ be a CQ-isomorphism or a

CQ-anti-isomorphism and v ∈ V \ {0} .

(a) ϕ(Bv) = ϕ(v) .

(b) If A ∈ A is (weakly) adapted to v , then B ◦ A ◦ B−1 ∈ A′ is (weakly) adapted to Bv .
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(c) If B is a CQ-isomorphism and v = ‖v‖ (cos(t) · x + sin(t) · Jy) is a (weak) canonical

representation for v , then Bv = ‖v‖ (cos(t) · Bx + sin(t) · JBy) is a (weak) canonical

representation for Bv .

Proof. The statements are obvious for the case where B is a CQ-isomorphism.

To show (a),(b) for the case where B is a CQ-anti-isomorphism, it therefore suffices to consider

the case where B equals some element A0 ∈ A because of the fact that the map B 7→ B ◦ A0

is a bijection from the set of CQ-isomorphisms V → V′ onto the set of CQ-anti-isomorphisms

V → V′ . In this case we have for any v ∈ V \ {0}

〈Bv,A0(Bv)〉C = 〈A0v, v〉C = 〈v,A0v〉C .

This equation shows that ϕ(Bv) = ϕ(v) holds, and also that if A0 is (weakly) adapted to v ,

then B ◦ A0 ◦B−1 = A0 is (weakly) adapted to Bv . �

2.35 Corollary. Suppose v ∈ V \ {0} and λ ∈ S1 are given. Then ϕ(λv) = ϕ(v) holds, and if

A ∈ A is (weakly) adapted to v , then λ2A is (weakly) adapted to λv .

Proof. Apply Proposition 2.34(a),(b) to the CQ-automorphism B : V → V, v 7→ λv . �

2.6 The action of Aut(A) on S(V)

Let (V,A) be an n-dimensional CQ-space. As Aut(A) consists of unitary maps of V , this

group acts via isometries on S(V) . In the present section, we determine the orbits of this action

and show that the action is irreducible.

2.36 Proposition. (a) For n ≥ 2 , the orbits of the action of Aut(A) on S(V) are the sets

Mt := { v ∈ S(V) |ϕ(v) = t } ,

where t runs through [0, π4 ] .

(b) For n > 2 , already Aut(A)0 acts transitively on Mt .

2.37 Example. Mπ/4 = Q̃(A) .

Proof of Proposition 2.36. For (a). Let v ∈ S(V) be given, denote by O ⊂ S(V) the orbit

through v of the action of Aut(A) on S(V) and put t := ϕ(v) ∈ [0, π4 ] . Then we have to

show O = Mt . Proposition 2.34(a) already gives O ⊂ Mt . Conversely, let v′ ∈ Mt be given.

Then there exist conjugations A,A′ ∈ A which are adapted to v resp. to v′ and canonical

representations

v = cos(t)x+ sin(t)Jy and v′ = cos(t)x′ + sin(t)Jy′ (2.30)
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with x, y ∈ S(V (A)) , x′, y′ ∈ S(V (A′)) , x ⊥ y and x′ ⊥ y′ . Hence, there exists a linear isome-

try L : V (A) → V (A′) with Lx = x′ and Ly = y′ . By Proposition 2.15, the complexification

LC : V → V is a CQ-automorphism, and Equations (2.30) show that v ′ = LCv ∈ O holds.

Thus we have proved Mt ⊂ O .

For (b). For odd n we have Aut(A)0 = Aut(A) by Proposition 2.17(b), and therefore the

statement then was already shown in (a).

If n ≥ 4 is even, let v, v′ ∈Mt be given. We have to show that there exists B ∈ Aut(A)0 so that

Bv = v′ holds. By (a), there exists B̃ ∈ Aut(A) so that B̃v = v′ holds; by Proposition 2.17(b)

B̃ can be represented as B̃ = λ L̃C with λ ∈ S1 and L̃ ∈ O(V (A)) . If L̃ ∈ SO(V (A)) holds,

we have B := B̃ ∈ Aut(A)0 (again, see Proposition 2.17(b)) and Bv = v ′ . Otherwise, we

represent v as in (2.30), choose z ∈ S(V (A)) orthogonal to x and y and consider the orthogonal

transformation S : V (A) → V (A) characterized by Sz = −z and S|(IRz)⊥ = id(IRz)⊥ . We

have detS = −1 and therefore L := L̃ ◦ S ∈ SO(V (A)) , hence B := λLC ∈ Aut(A)0 . Also,

the construction of B shows that Bv = B̃v = v′ holds. �

2.38 Proposition. For 0 < t < π
4 , Mt is a hypersurface of S(V) . For any v ∈ Mt , we have

TvMt = ker(Tvϕ) .

Proof. Because ϕ|{ v ∈ S(V) | 0 < ϕ(v) < π
4 } is a submersion (Proposition 2.30), this proposi-

tion is an immediate consequence of the theorem on equation-defined manifolds. �

2.39 Proposition. (a) Aut(A) acts irreducibly on V .

(b) For n > 2 , already Aut(A)0 acts irreducibly on V .

Proof. Put G := Aut(A)0 in the case n > 2 , G := Aut(A) in the case n = 2 . It suffices to

show that G acts irreducibly on V . Let a G-invariant subspace U 6= {0} of V be given. We

fix v0 ∈ S(U) and put t := ϕ(v0) ∈ [0, π4 ] . By Proposition 2.36, G acts transitively on Mt ,

and therefore the G-invariance of U implies

Mt ⊂ U . (2.31)

We also fix A ∈ A . In the case t = 0 , (2.31) shows that V (A) ⊂ IR ·M0 ⊂ U holds. Because

U is a complex subspace, this implies U = V .

Hence, we may now suppose t > 0 . Let w ∈ U⊥ be given; we will show w = 0 . (2.31) shows

that we have in particular

∀ v ∈Mt : 〈w, v〉IR = 0 . (2.32)

Let (x, y) be any orthonormal system in V (A) . Then we have v := cos(t)x + sin(t)Jy ∈ Mt

and therefore by Equation (2.32):

0 = 〈w, v〉IR = 〈ReAw + J ImAw, cos(t)x+ sin(t)Jy〉IR
= cos(t) · 〈ReAw, x〉IR + sin(t) · 〈ImAw, y〉IR . (2.33)
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We also have cos(t)x− sin(t)Jy ∈Mt and therefore by an analogous calculation

0 = cos(t) · 〈ReAw, x〉IR − sin(t) · 〈ImAw, y〉IR . (2.34)

Because of t 6= 0 , we have cos(t), sin(t) 6= 0 , and therefore Equations (2.33) and (2.34) together

imply

〈ReAw, x〉IR = 〈ImA w, y〉IR = 0 . (2.35)

Because we have n ≥ 2 , any given x ∈ S(V (A)) can be extended to an orthonormal system

(x, y) in V (A) , and therefore Equation (2.35) shows that we have 〈ReAw, x〉IR = 0 for every

x ∈ S(V (A)) , hence ReA w = 0 . Analogously, we see that ImA w = 0 holds, and therefore we

have w = 0 .

Thus, we conclude U⊥ = {0} and therefore U = V . �

2.40 Remark. In the case n = 2 , the action of Aut(A)0 on V is in fact reducible, as the following

consideration shows:

For n = 2 , there are exactly two 1-dimensional complex, isotropic subspaces U1, U2 of V , and

V = U1 	 U2 holds. If we fix A ∈ A and an orthogonal complex structure j : V (A) → V (A)

( j is unique up to a choice of sign), then these subspaces are given by

U1 = {x+ J(jx) |x ∈ V (A) } and U2 = {x− J(jx) |x ∈ V (A) } .

Uk (with k ∈ {1, 2} ) is invariant under the action of Aut(A)0 : For any B ∈ Aut(A)0 , B(Uk)

is a complex 1-dimensional, isotropic subspace of V , and therefore we have B(Uk) ∈ {U1, U2} .

Because Aut(A)0 is connected, it follows that in fact B(Uk) = Uk holds.

As we will see in Section 5.5, the decomposition V = U1 	 U2 gives rise to two totally geodesic

foliations of the 2-dimensional complex quadric Q2 , whose leaves are isometric to IP1 and which

intersect orthogonally in every point of Q2 .

2.41 Remark. Because the hypersurfaces Mt ( 0 < t < π
4 ) are orbits of an action on the sphere via

isometries, (Mt)0<t<π/4 is a family of isoparametric hypersurfaces in S(V) ; its focal sets are

M0 and Mπ/4 .

The general situation of a homogeneous (and hence isoparametric) hypersurface in a sphere has

been investigated by Hsiang/Lawson ([HL71], Section II.1) and Takagi/Takahashi ([TT72]).

Hsiang and Lawson classified in [HL71] those compact subgroups G ⊂ O(r + 1) for which the

principal orbits of the action of G on Sr are hypersurfaces in Sr . It follows from the tables

given in [HL71], Theorem 5, p. 16 that any (closed, connected) homogeneous hypersurface in

Sr is as a homogeneous space isomorphic to a principal orbit of the isotropy representation of a

symmetric space of rank 2 .

As we will see in Chapter 3, complex quadrics Q of dimension n ≥ 2 are Riemannian symmetric

spaces of rank 2 , and the action of Aut(A(Q, p))0 on TpQ is isomorphic to the action of the

isotropy representation of Q at p . Because of Proposition 2.36(b), it follows for a CQ-space
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(V,A) of dimension n ≥ 3 that the isoparametric hypersurfaces Mt ( 0 < t < π
4 ) in S(V)

are as homogeneous Aut(A)0-spaces isomorphic to principal orbits of the isotropy action of an

n-dimensional complex quadric.

In [TT72], Takagi and Takahashi studied homogeneous hypersurfaces in a sphere from the view-

point of isoparametric hypersurfaces. Because of the result of Hsiang/Lawson cited above, it

is sufficient to consider the orbits under the isotropy representation of symmetric spaces M of

rank 2. Among other things, Takagi and Takahashi show how the root system of the symmetric

space M can be used to calculate the (constant) principal curvatures of a principal orbit of the

isotropy representation and their multiplicities (see [TT72], Theorem (3), p. 470 and Table II,

p. 480).

Via the cited results from [TT72] and the information on the roots and the root spaces of a

complex quadric given in Section 3.2, one can obtain the following facts on the family (Mt) of

isoparametric hypersurfaces in S(V) , where (V,A) is again a CQ-space of dimension n ≥ 3 :

Mt (with 0 < t < π
4 ) has g = 4 principal curvatures. (In the case n = 2 , the number

of principal curvatures is reduced to 2 .) For A ∈ A and an orthonormal system (x, y) in

V (A) , we have v := cos(t)x + sin(t)Jy ∈ Mt , the unit vector u ∈ TvS(V) characterized by
−→u = − sin(t)x + cos(t)Jy is normal to Mt , and with respect to this unit normal vector, the

principal curvatures of Mt and their multiplicities are

principal curvature − cot(t) tan(t) cos(t)+sin(t)
cos(t)−sin(t) − cos(t)−sin(t)

cos(t)+sin(t)

multiplicity n− 2 n− 2 1 1
.

2.7 The curvature tensor of a CQ-space

In Proposition 1.21 we calculated the curvature tensor of a complex quadric Q . As that propo-

sition shows, the curvature tensor of Q at some point p ∈ Q can be described in terms of the

inner product on TpQ , its complex structure and the CQ-structure A(Q, p) alone, and therefore

a corresponding tensor can be defined on any CQ-space (V,A) . We now turn to the study of

the algebraic properties of this tensor, which we will call the curvature tensor of the CQ-space

(V,A) .

2.42 Definition. For A ∈ A we call the IR-trilinear map R : V×V×V → V, (u, v, w) 7→ R(u, v)w

defined by

∀u, v, w ∈ V : R(u, v)w = 〈w, v〉Cu− 〈w, u〉Cv − 2 · 〈Ju, v〉IRJw
+ 〈v,Aw〉CAu− 〈u,Aw〉CAv ,

the curvature tensor of the CQ-space (V,A) . R is independent of the choice of A ∈ A .

Proof for the independence of R from A ∈ A . For any λ ∈ S1 we have 〈v, λAw〉CλAu − 〈u, λAw〉CλAv =

〈v,Aw〉CAu− 〈u,Aw〉CAv . �
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Let Q be a complex quadric and p ∈ Q . Then the curvature tensor of the CQ-space

(TpQ,A(Q, p)) in the sense of the present section is equal to the curvature tensor of the quadric

Q at p (see Proposition 1.21). Of course, this fact is the motivation for Definition 2.42. Con-

sequently, the results we obtain on the curvature tensor of a CQ-space imply results on the

curvature tensor of a complex quadric.

2.43 Proposition. Let R be the curvature tensor of the CQ-space (V,A) .

(a) R is C-linear in w and skew-symmetric in (u, v) .

(b) For u, v, w ∈ V , we have

R(u, v)w =〈v, w〉IRu− 〈u,w〉IRv
+ 〈Jv,w〉IRJu− 〈Ju,w〉IRJv − 2 · 〈Ju, v〉IRJw
+ 〈v,Aw〉IRAu− 〈u,Aw〉IRAv
+ 〈v, JAw〉IRJAu− 〈u, JAw〉IRJAv .

(c) If A ∈ A and u, v, w ∈ V (A) holds, we have

R(u, v)w = 2 · (〈v, w〉IRu− 〈u,w〉IRv) .

Thus R|V (A)3 is the curvature tensor of a space of constant sectional curvature 2 .

(d) If W is an isotropic subspace of V and u, v, w ∈W holds, we have

R(u, v)w = 〈v, w〉IRu− 〈u,w〉IRv + 〈Jv,w〉IRJu− 〈Ju,w〉IRJv − 2 · 〈Ju, v〉IRJw .

Thus if W is a complex isotropic subspace, then R|W 3 is the curvature tensor of a space

of constant holomorphic sectional curvature 4 . If W is a totally real isotropic subspace,

then R|W 3 is the curvature tensor of a space of constant sectional curvature 1 .

Proof. Obvious. (For (b), use Equation (2.1).) �

Let Q be a complex quadric, p ∈ Q and A ∈ A(Q, p) . Then Proposition 2.43(c) shows

in particular that the subspace V (A) of TpQ is curvature-invariant (i.e. ∀u, v, w ∈ V (A) :

R(u, v)w ∈ V (A) holds). Because Q is a symmetric space (see Chapter 3), it follows that

there exists a totally geodesic, complete, connected submanifold M of Q with p ∈ M and

TpM = V (A) . Because the restriction of the curvature tensor to V (A) is the curvature tensor

of a sphere of radius 1/
√

2 , M is locally isometric to such a sphere. In Section 5.3 we will

explicitly construct an embedding onto M ; it will turn out that M is in fact globally isometric

to the sphere.

Similarly Proposition 2.43(d) shows that any isotropic subspace W of (TpQ,A(Q, p)) which is

either complex or totally real, is curvature-invariant and therefore gives rise to a totally geodesic,

complete, connected submanifold M of Q with p ∈ M and TpM = W . If W is complex,
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then R|W 3 is the curvature tensor of a complex projective space equipped with the Fubini-

Study metric, and consequently M is locally isometric to such a space; in fact we will see in

Section 5.5 that this also is a global isometry. On the other hand, if W is totally real, then

R|W 3 is the curvature tensor of a sphere of radius 1 and therefore M is locally isometric to

such a sphere; in this case it turns out however that M is not globally isometric to the sphere,

but rather to a real projective space.

2.44 Definition. Let (V,A) and (V′,A′) be CQ-spaces, denote by R and R′ their respective curva-

ture tensors and let an IR-linear map B : V → V′ be given. We call B curvature-equivariant,

if

∀u, v, w ∈ V : B(R(u, v)w) = R′(Bu,Bv)Bw

holds.

2.45 Proposition. CQ-isomorphisms and CQ-anti-isomorphisms are curvature-equivariant.

Proof. Let (V,A) and (V′,A′) be CQ-spaces and denote their respective curvature tensors by

R and R′ .

Let B : V → V′ be a CQ-isomorphism. Let us fix A ∈ A , then there exists A′ ∈ A′ with

B ◦A = A′ ◦B . Using this equation and the fact that B is a C-linear isometry, the curvature-

equivariance of B can be read off Definition 2.42.

Any CQ-anti-isomorphism B : V → V′ can be represented as B = B ◦ A , where A ∈ A holds

and B : V → V′ is a CQ-isomorphism. Because of the previous result, it therefore suffices to

show that A is curvature-equivariant, and this is easily done via Proposition 2.43(b). �

2.46 Remark. As we will see in Section 3.3, any curvature-equivariant C-linear or anti-linear map

already is a CQ-isomorphism resp. a CQ-anti-isomorphism. Moreover, for n ≥ 3 any curvature-

equivariant IR-linear map is already either C-linear or anti-linear, and hence a CQ-isomorphism

or a CQ-anti-isomorphism.

We now give another representation for the curvature tensor of (V,A) which is frequently useful.

We consider for any u, v ∈ V the skew-Hermitian linear map

u ∧ v : V → V, w 7→ 〈w, v〉C u− 〈w, u〉C v . (2.36)

It should be noted that if u, v ∈ V (A) holds for some A ∈ A , then u∧v is the complexification

of the skew-adjoint linear map

V (A) → V (A), x 7→ 〈x, v〉IR u− 〈x, u〉IR v ,

whence it follows that in this case u ∧ v ∈ auts(A) holds.

2.47 Proposition. Denote by R the curvature tensor of (V,A) and fix A ∈ A . Then we have for

any u, v, w ∈ V
R(u, v)w = ρ(u, v) · Jw + C(u, v)w (2.37)
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with the functions

ρ : V × V → IR, (u, v) 7→ 2 · 〈u, Jv〉IR
and C : V × V → auts(A), (u, v) 7→ u ∧ v +Au ∧Av

= 2 · (ReA(u) ∧ ReA(v) + ImA(u) ∧ ImA(v)) .

C does not depend on the choice of A ∈ A .

Proof. Let A ∈ A and u, v ∈ V be given. Because both sides of Equation (2.37) are C-linear

in w and C also is C-linear, it suffices to consider w ∈ V (A) . In this case, we have

R(u, v)w − ρ(u, v) · Jw
= 〈w, v〉Cu− 〈w, u〉Cv + 〈v,Aw〉CAu− 〈u,Aw〉CAv = (u ∧ v +Au ∧Av)w
= 〈w, v〉Cu+ 〈v, w〉CAu− (〈w, u〉Cv + 〈u,w〉CAv)
= 〈w, v〉Cu+A(〈w, v〉Cu) − (〈w, u〉Cv +A(〈u,w〉Cv))
= 2 · (ReA(〈w, v〉Cu) − ReA(〈w, u〉Cv))
= 2 · (Re(〈w, v〉C) · ReA u− Im(〈w, v〉C) · ImA u− Re(〈w, u〉C) · ReA v + Im(〈w, u〉C) · ImA v)

= 2 · (〈w, v〉IR · ReA u− 〈w, Jv〉IR · ImA u− 〈w, u〉IR · ReA v + 〈w, Ju〉IR · ImA v)

= 2 · (〈w,ReA v〉IR · ReA u− 〈w,ReA u〉IR · ReA v + 〈w, ImA v〉IR · ImA u− 〈w, ImA u〉IR · ImA v)

= 2 · (ReA(u) ∧ ReA(v) + ImA(u) ∧ ImA(v))w .

This calculation shows that the equals sign in the definition of C indeed holds, and that Equa-

tion (2.37) holds. Because R(u, v)w and ρ(u, v)Jw are independent of the choice of A ∈ A ,

we see from Equation (2.37) that C(u, v)w also is independent of this choice. Via the second

presentation of C(u, v) given in its definition we see that C indeed maps into auts(A) . �

2.48 Corollary. Let U be an IR-linear subspace of V which is curvature-invariant, meaning that

∀u, v, w ∈ U : R(u, v)w ∈ U

holds. If there exist A ∈ A and x, y ∈ V (A) \ {0} so that Jx, y ∈ U and 〈x, y〉IR 6= 0 holds,

then U is in fact a complex subspace of V .

Proof. If ρ and C denote the functions from Proposition 2.47, we have ρ(Jx, y) =

2 〈Jx, Jy〉IR = 2 〈x, y〉IR 6= 0 and C(Jx, y) = 2 (0 ∧ y + x ∧ 0) = 0 , and therefore R(Jx, y) =

ρ(Jx, y) · J . Because U is curvature-invariant and Jx, y ∈ U holds, U is invariant under

R(Jx, y) and hence also under J . �

We now suppose n ≥ 2 and consider for any vector w ∈ V the Jacobi operator

Rw : V → V, v 7→ R(v, w)w

corresponding to w .
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Because the eigenvalues and eigenspaces of the Jacobi operators corresponding to the curvature

tensor of a symmetric space are related to the roots and root spaces of this symmetric space

(we will investigate this relationship in Section 3.2), it is of interest for the study of the complex

quadric to give an explicit description of the eigenvalues and eigenspaces of the operators Rw .

This is done in the following theorem, which closely follows the description already given in

[Rec95].

2.49 Theorem. Let w ∈ S(V) be given, and suppose that

w = cos(t)x+ sin(t)Jy (2.38)

is a weak canonical representation of w in the sense of Proposition 2.32(b), i.e. we have t ∈ IR ,

A ∈ A and x, y ∈ S(V (A)) with x ⊥ y .

Then the Jacobi operator Rw has the following eigenvalues κk(t) , eigenspaces Ek and multi-

plicities:

k κk(t) ∈ Spec(Rw) Ek = Eig(Rw, κk(t)) n(Rw, κk(t))

0 0 IRx	 IR(Jy) 2

1 1 − cos(2t) J((IRx	 IRy)⊥) n− 2

2 1 + cos(2t) (IRx	 IRy)⊥ n− 2

3 2(1 − sin(2t)) IR(Jx+ y) 1

4 2(1 + sin(2t)) IR(Jx− y) 1

Here and in the sequel,
⊥

denotes the ortho-complement in V (A) . For n = 2 , the eigenvalues

1± cos(2t) do not exist (their multiplicity is zero). Also, if some of the eigenvalues given in the

table coincide — in the interval [0, π4 ] this happens for t ∈ {0, arctan( 1
2 ), π4} — then one has to

add the corresponding eigenspaces and multiplicities. The eigenfunctions κk(t) are π-periodic

and satisfy the following symmetry equations for any t ∈ IR :

κ1(
π
2 − t) = κ2(t) = κ1(t+ π

2 ) , κ2(
π
2 − t) = κ1(t) = κ2(t+ π

2 ) , (2.39)

κ3(
π
2 − t) = κ3(t) = κ4(t+ π

2 ) and κ4(
π
2 − t) = κ4(t) = κ3(t+ π

2 ) . (2.40)

Therefore the following graph of the functions κk(t) for t ∈ [0, π4 ] conveys all information on

them:

- t

6
κk(t)

0

2

4

1

4

0 arctan( 1
2 ) π

4

κ1

κ2

κ3

κ4
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Warning. It follows from Equations (2.39) and (2.40) that in the setting of the theorem, the

Jacobi operators corresponding to w = cos(t)x+ sin(t)Jy , to w ′ := cos(π2 − t)x+ sin(π2 − t)Jy

and to w′′ := cos(t + π
2 )x + sin(t + π

2 )Jy have the same eigenvalues. However, this does not

mean that these Jacobi operators are equal, because the corresponding eigenspaces differ.

Proof of Theorem 2.49. One easily verifies via Proposition 2.47 that the elements of Ek are in

fact eigenvectors of Rw corresponding to the eigenvalue κk(t) . For example, let us check this

for k = 1 . Let v = Jz with z ∈ V (A) , z ⊥ x, y be given. Then we have

ρ(v, w) = 2〈v, Jw〉IR = 2〈Jz, J(cos(t)x+ sin(t)Jy)〉IR = 2 cos(t) · 〈z, x〉IR = 0

and

C(v, w) = 2 (ReA v ∧ ReAw + ImA v ∧ ImA w) = 2 sin(t) · z ∧ y ;

consequently, we obtain

Rw(v) = R(v, w)w = ρ(v, w)Jw + C(v, w)w

= 2 sin(t) · (z ∧ y)(cos(t)x+ sin(t)Jy)

= 2 sin(t) cos(t) · (z ∧ y)x+ 2 sin(t)2 · J((z ∧ y)y)
= 2 sin(t)2Jz = (1 − cos(2t))v .

Therefore v is in fact an eigenvector of Rw belonging to the eigenvalue 1 − cos(2t) .

Because the spaces Ek together span V , it is clear that the table is complete. The symmetry

relations (2.39) and (2.40) follow from the well-known properties of sin and cos . �

2.50 Corollary. Let w ∈ S(V) be given, let A ∈ A be adapted to w and let w = cos(ϕ(w) )x +

sin(ϕ(w) )Jy be a canonical representation of w with respect to A . Then we have

kerRw =





IRx	 J((IRx)⊥) = IRw 	 J((IRw)⊥) for ϕ(w) = 0

IRx	 IRJy = IRw 	 IRAw for 0 < ϕ(w) < π
4

IRx	 IRJy 	 IR(Jx+ y) = IRw 	 CAw for ϕ(w) = π
4

.

Proof. The statement is an immediate consequence of Theorem 2.49. �

2.51 Corollary. Let w ∈ S(V) be given. Then the A-angle ϕ(w) of w is determined by Spec(Rw) ;

more precisely, we have

2 · (1 + sin(2ϕ(w))) = maxSpec(Rw) .

Proof. Apply Theorem 2.49 with a canonical representation of w . �
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2.8 Flat subspaces

As previously, we suppose that (V,A) is an n-dimensional CQ-space with n ≥ 2 ; we denote

its curvature tensor by R .

2.52 Definition. An IR-linear subspace a ⊂ V is called flat if

∀u, v, w ∈ a : R(u, v)w = 0

holds. A k-dimensional flat subspace is also called a k-flat.

2.53 Example. Every real-1-dimensional linear subspace of V is flat.

2.54 Theorem. If a ⊂ V is a flat subspace, then we have dimIR(a) ≤ 2 . The 2-flats of V are

exactly the spaces

a = IRx	 IRJy

with A ∈ A , x, y ∈ S(V (A)) and x ⊥ y .

Proof. First, let a space a = IRx	 IRJy with A ∈ A , x, y ∈ S(V (A)) and x ⊥ y be given. To

prove that a is flat, it suffices to show ρ(x, Jy) = 0 and C(x, Jy) = 0 , where ρ and C are

the functions of Proposition 2.47, and this is easily done.

Now, let a flat subspace a ⊂ m with dimIR(a) ≥ 2 be given. Because a is flat, we have

∀w ∈ a : a ⊂ kerRw , (2.41)

where Rw denotes the Jacobi operator corresponding to w as in Section 2.7.

We first prove

a is not an isotropic subspace of (W,A) (2.42)

by contradiction: Assume that a is isotropic and fix w ∈ S(a) . Then any A ∈ A is adapted to

w , and therefore (2.41) and Corollary 2.50 show

a ⊂ IRw 	 CAw . (2.43)

Now, let v ∈ a be given; because of (2.43), there exist s ∈ IR and λ ∈ C so that v = s·w+λ·Aw
holds. By assumption, a is isotropic, therefore v, w ∈ a implies via Proposition 2.20(a)

0 = 〈v,Aw〉C = 〈s · w + λ · Aw,Aw〉C = s · 〈w,Aw〉C + λ · 〈Aw,Aw〉C = λ

and hence v ∈ IRw . Thus, we have shown a = IRw , in contradiction to dimIR(a) ≥ 2 . This

proves (2.42).

Because of (2.42), there exists w ∈ S(a) with ϕ(w) 6= π
4 . Let A ∈ A be adapted to w and let

x, y ∈ S(V (A)) be such that w = cos(ϕ(w))x + sin(ϕ(w)) Jy is a canonical representation of

w . In the case 0 < ϕ(w) < π
4 , we have kerRw = IRx 	 IRJy by Corollary 2.50 and therefore

(2.41) shows that a = IRx	 IRJy holds (remember dimIR(a) ≥ 2 ).
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In the case ϕ(w) = 0 , we have w = x and therefore (2.41) and Corollary 2.50 show that we

have

IRx ⊂ a ⊂ IRx	 J((IRx)⊥,V (A)) .

Therefore we have a = IRx⊕a′ with some a′ ⊂ J((IRx)⊥,V (A)) ⊂ JV (A) . Because R|(JV (A))3

is the curvature tensor of a space of constant curvature 2 (see Proposition 2.43(c)), we have

dimIR(a′) = 1 , and therefore there exists y′ ∈ S(V (A)) with y′ ⊥ x and a′ = IRJy′ ; whence

a = IRx⊕ IRJy′ follows. �

2.55 Corollary. Every vector of V is contained in a 2-dimensional flat subspace of V .

Proof. This follows from Theorem 2.54 because of the existence of canonical representations for

all v ∈ V (Theorem 2.28(c)). �
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Chapter 3

Isometries of the complex quadric

In this chapter we study the group of isometries of a complex quadric. In Section 3.1 we will

see that any CQ-automorphism of a CQ-space (V,A) gives rise to a holomorphic isometry of

the corresponding quadric Q := Q(A) . As a consequence, we see that there is “free mobility of

CQ-frames” in Q in the sense that any CQ-isomorphism between tangent spaces of Q can be

realized as the tangent map of a suitable holomorphic isometry of Q .

In Section 3.2, we study Q as a symmetric space. In particular, we explicitly describe the

symmetric structure of Q (in the sense of the “Lie-theoretical approach” to symmetric spaces

described in Appendix A.2) and the canonical decomposition g = k ⊕ m it induces. Following

the philosophy that the CQ-structure together with the Riemannian metric and the complex

structure of Q are the “fundamental geometric entities” of Q , we derive from the results of

Sections 2.7 and 2.8 descriptions of the Cartan subalgebras, the roots and the corresponding

root spaces of the symmetric space Q in terms of these fundamental entities.

As an application, we give in Section 3.3 a proof of the fact that (1) there are no holomorphic

isometries on Q besides those that were already described in Section 3.1 and that (2) if the

dimension of Q is 6= 2 , then any isometry of Q is either holomorphic or anti-holomorphic.

These facts are already found in [Rec95] (as Corollary 2 there). However, by making use of our

terminology of complex quadrics with respect to an arbitrary conjugation, a much shorter proof

than that from [Rec95] can be given for fact (1). Also the proof of fact (2) given here is different

from that of [Rec95] (although it is based on a similar idea).

Finally, we consider 2-dimensional complex quadrics specifically, which play an exceptional role

in several respects. For example, on a 2-dimensional complex quadric there exist isometries

which are neither holomorphic nor anti-holomorphic. These exceptionalities can be traced to

the fact that a 2-dimensional complex quadric is as a Hermitian symmetric space isomorphic to

IP1 × IP1 and is therefore, unlike the complex quadrics of other dimension, not irreducible. In

Section 3.4 we explicitly describe an isomorphism IP1 × IP1 → Q2 via the Segre embedding.

Throughout the chapter we make extensive use of the theory of symmetric spaces, including the

theory of root systems. An exposition of the aspects of the theory which are of relevance here,

and which also fixes the notations we shall use, is given in Appendix A.

67
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3.1 Holomorphic and anti-holomorphic isometries of Q

We let a CQ-space (V,A) of dimension n ≥ 3 be given and consider the corresponding complex

quadric Q := Q(A) of dimension m := n − 2 along with the quadratic cone Q̂ := Q̂(A) and

the set Q̃ := Q̃(A) .

As before, we denote for any unitary or anti-unitary map B : V → V by B : IP(V) →
IP(V), [z] 7→ [Bz] the corresponding holomorphic resp. anti-holomorphic map of IP(V) . We

will also make extensive use of the Lie group I(Q) of isometries of Q , of its subgroup Ih(Q) of

holomorphic isometries and of the coset Iah(Q) of anti-holomorphic isometries. We will use the

Lie subgroups Aut(A),Auts(A) ⊂ U(V) of CQ-automorphisms resp. strict CQ-automorphisms

of (V,A) and the coset Aut(A) of CQ-anti-automorphisms (see Definition 2.10(a),(b),(c)).

Aut(A) is contained in the set U(V) of anti-unitary transformations of V .

At first, we recapitulate well-known facts about isometries of IP(V) already mentioned in Sec-

tion 1.2.

3.1 Proposition. (a) For every B ∈ U(V) we have B ∈ Ih(IP(V)) . In particular, TpB :

TpIP(V) → TB(p)IP(V) is a C-linear isometry for any p ∈ IP(V) .

(b) For every B ∈ U(V) we have B ∈ Iah(IP(V)) . In particular, TpB : TpIP(V) → TB(p)IP(V)

is an anti-linear isometry for any p ∈ IP(V) .

(c) If B ∈ U(V) satisfies B = idIP(V) , then there exists λ ∈ S1 with B = λ idV .

We now show that isometries of Q can be obtained in an analogous way:

3.2 Proposition. (a) For every B ∈ Aut(A) we have B|Q ∈ Ih(Q) and for any p ∈ Q ,

Tp(B|Q) : TpQ→ TB(p)Q is a CQ-isomorphism.

(b) For every B ∈ Aut(A) we have B|Q ∈ Iah(Q) and for any p ∈ Q , Tp(B|Q) : TpQ →
TB(p)Q is a CQ-anti-isomorphism.

3.3 Remark. Proposition 3.2(b) shows in particular that A|Q is an anti-holomorphic isometry

on Q for A ∈ A . This isometry does not depend on the choice of A ∈ A , and is therefore

“canonical” in the sense that it is derived exclusively from the geometric objects which define

Q . As we will see in Section 5.4, the only point of Q of maximal distance from some p ∈ Q is

the point A(p) . For this reason, we call A|Q the antipode map of Q .

Proof of Proposition 3.2. For (a). Let B ∈ Aut(A) be given. As a CQ-isomorphism of (V,A) ,

B leaves Q̃ = Mπ/4 invariant (see Proposition 2.34(a)), and therefore we have B(Q) = Q . By

Proposition 3.1(a) we have B ∈ Ih(IP(V)) ; because Q is a complex, regular submanifold of

IP(V) , we conclude B|Q ∈ Ih(Q) .

Now, let p ∈ Q and ζ ∈⊥1
p(Q ↪→ IP(V)) be given. Tp(B|Q) = TpB|TpQ is a C-linear isometry

by Proposition 3.1(a). Moreover, Proposition 3.1(a) shows that B is an isometry of the ambient
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space IP(V) , and therefore B(Q) = Q implies B∗(⊥1
p(Q ↪→ IP(V))) = ⊥1

B(p)(Q ↪→ IP(V)) . Via

the Weingarten equation, we conclude

AQB∗ζ
◦ (TpB|TpQ) = (TpB|TpQ) ◦AQζ ,

where AQ denotes the shape operator of Q ↪→ IP(V) . This shows Tp(B|Q) = TpB|TpQ to be

a CQ-isomorphism.

For (b). The proof is analogous to the proof of (a). �

3.4 Corollary. The Lie group action Ψ : Auts(A)0 × Q → Q, (B, p) 7→ B(p) is transitive; in

this way Q is a Riemannian homogeneous Auts(A)0-space. In particular, Q is connected and

complete.

Proof. To prove the transitivity of the action Ψ let p1, p2 ∈ Q be given. Then we have to show

that there exists B ∈ Auts(A)0 so that B(p1) = p2 holds.

We choose zk ∈ Q̃ = Mπ/4 so that pk = [zk] holds for k ∈ {1, 2} . By Proposition 2.36

there exists B ∈ Aut(A) so that Bz1 = z2 and therefore B(p1) = p2 holds. Because we have

λB = B for every λ ∈ S1 , we may suppose without loss of generality that B ∈ Auts(A) holds.

In the case that we have B ∈ Auts(A)0 , we are finished.

Thus, we now consider the case B ∈ Auts(A) \ Auts(A)0 . Let us fix A ∈ A . Then Proposi-

tion 2.17(a) shows that there exists L ∈ O(V (A)) with detL = −1 so that B = LC holds.

Because of n ≥ 3 there exists x ∈ S(V (A)) with x ⊥ ReA z1, ImA z1 . The orthogonal map

S : V (A) → V (A) with

Sx = −x and S|(IRx)⊥ = id(IRx)⊥

satisfies detS = −1 . Thus we have (L ◦ S)C ∈ Auts(A)0 , also (L ◦ S)C(p1) = B(p1) = p2

holds.

Proposition 3.2(a) shows that Ψ acts via isometries on Q and therefore, Q is a Riemannian

homogeneous Auts(A)0-space. Because Auts(A)0 is connected, we see that Q is connected. As

a Riemannian homogeneous space, Q is complete (see [O’N83], Remark 9.37, p. 257). �

3.5 Theorem. (Mobility in the quadric.) Let p1, p2 ∈ Q and a map L : Tp1Q → Tp2Q be

given.

(a) If L is a CQ-isomorphism, there exists one and only one f ∈ Ih(Q) with

f(p1) = p2 and Tp1f = L ,

and we have f = B|Q for some B ∈ Auts(A) .

(b) If L is a CQ-anti-isomorphism, there exists one and only one f ∈ Iah(Q) with

f(p1) = p2 and Tp1f = L ,

and we have f = B|Q for some B ∈ Aut(A) .
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3.6 Remark. As we will see in Section 3.3, any holomorphic or anti-holomorphic isometry of Q

is obtained in the way described in Theorem 3.5. Moreover, for m 6= 2 , any isometry of Q is

either holomorphic or anti-holomorphic.

Proof of Theorem 3.5. For (a). Because Q is connected (Corollary 3.4), the uniqueness of f

follows from the rigidity of isometries.

For the existence proof, we fix A ∈ A and denote by AQ the shape operator of Q ↪→ IP(V) ,

by π : S(V) → IP(V) the Hopf fibration, by ξ the unit normal field along π|Q̃ introduced in

Section 1.3 and by C the endomorphism field on the manifold V induced by A in the way also

described in Section 1.3.

We fix z1 ∈ π−1({p1}) , then AQξ(z1) ∈ A(Q, p1) holds, and therefore we have L ◦AQξ(z1) ◦ L
−1 ∈

A(Q, p2) because L is a CQ-isomorphism. By Proposition 1.15 it follows that there exists

z2 ∈ π−1({p2}) so that

L ◦ AQξ(z1) ◦ L
−1 = AQξ(z2)

holds. Theorem 1.16 therefore shows that the C-linear isometry B0 : Hz1Q→ Hz2Q determined

by

(π∗|Hz2Q) ◦B0 = L ◦ (π∗|Hz1Q) (3.1)

satisfies

B0 ◦ (Cz1 |Hz1Q) = (Cz2 |Hz2Q) ◦ B0 . (3.2)

We now consider the C-linear map B : V → V characterized by

Bz1 = z2, B(Az1) = Az2 and ∀v ∈ Hz1Q : B(−→v ) =
−−→
B0v ; (3.3)

B is well-defined and a C-linear isometry because (zk, Azk) is a unitary basis of (
−−−→Hzk

Q)⊥,V

for k ∈ {1, 2} . Equations (3.3) and (3.2) show that B is a strict CQ-automorphism of (V,A) .

Therefore we have f := B|Q ∈ Ih(Q) by Proposition 3.2(a). We have f(p1) = π(Bz1) =

π(z2) = p2 . Moreover, if we abbreviate πQ := π|Q̃ and BQ := B|Q̃ , we have f ◦ πQ = πQ ◦BQ
and therefore

Tp1f ◦ (π∗|Hz1Q) = Tz1(f ◦ πQ)|Hz1Q = Tz1(πQ ◦BQ)|Hz1Q = (π∗|Hz2Q) ◦ (Tz1BQ|Hz1Q)

(3.3)
= (π∗|Hz2Q) ◦ B0

(3.1)
= L ◦ (π∗|Hz1Q) ,

hence Tp1f = L .

For (b). The uniqueness of f once again follows from the rigidity of isometries. For the

existence proof, we fix A ∈ A and consider the antipode map A|Q , which is an anti-holomorphic

isometry of Q as we already noted in Remark 3.3. Moreover, Proposition 3.2(b) shows that

Tp2(A|Q) : Tp2Q→ TA(p2)Q is a CQ-anti-isomorphism. Hence

Tp2(A|Q) ◦ L : Tp1Q→ TA(p2)Q

is a CQ-isomorphism. It follows by (a) that there exists B̃ ∈ Auts(A) so that f̃ := B̃|Q ∈ Ih(Q)

satisfies

f̃(p1) = A(p2) and Tp1 f̃ = Tp2(A|Q) ◦ L .
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Put B := A ◦ B̃ ∈ Aut(A) and f := B|Q = (A|Q) ◦ f̃ ∈ Iah(Q) . A|Q is involutive along with

A , and therefore we have

f(p1) = A(f̃(p1)) = A(A(p2)) = p2

and

Tp1f = TA(p2)(A|Q) ◦ Tp1 f̃ = TA(p2)(A|Q) ◦ Tp2(A|Q) ◦ L = Tp2((A|Q) ◦ (A|Q)) ◦ L = L .

�

3.7 Remark. Another proof of the existence of isometries of Q corresponding to CQ-

(anti)-isomorphisms of tangent spaces of Q can be given via the Theorem of Car-

tan/Ambrose/Hicks (see [KN63], Theorem VI.7.4, p. 261f.), if one uses the fact that Q is a

locally Riemannian symmetric space which is simply connected (Remark 1.24(a)) and complete

(Corollary 3.4): If L : Tp1Q→ Tp2Q is a CQ-isomorphism or a CQ-anti-isomorphism, then L is

curvature-equivariant by Proposition 2.45, and therefore the Theorem of Cartan/Ambrose/Hicks

shows that there is an affine diffeomorphism f : Q → Q with f(p1) = p2 and Tp1f = L . Be-

cause the Riemannian metric and the complex structure of Q are parallel, the invariance of L

with respect to 〈·, ·〉IR causes f to be an isometry, and the complex (anti-)linearity of L causes

f to be (anti-)holomorphic.

3.8 Proposition. The kernel of the Lie group homomorphism Φ : Aut(A) → Ih(Q), B 7→ B|Q is

{λ idV |λ ∈ S1 } .

Proof. It is clear that {λ idV |λ ∈ S1 } ⊂ ker(Φ) holds. Conversely, let B ∈ Aut(A) be given

with B|Q = idQ . Let us fix p ∈ Q , then we have

TpB|TpQ = Tp(B|Q) = idTpQ . (3.4)

Let us also fix ζ ∈⊥1
p(Q ↪→ IP(V)) and denote by AQ the shape operator of Q ↪→ IP(V) . As in

the proof of Proposition 3.2 we get

AQB∗ζ
(3.4)
= AQB∗ζ

◦ (TpB|TpQ) = (TpB|TpQ) ◦ AQζ
(3.4)
= AQζ . (3.5)

The C-linear map ⊥p(Q ↪→ IP(V)) → End(TpQ), η 7→ AQη is injective, and therefore Equa-

tion (3.5) implies B∗ζ = ζ . This fact together with Equation (3.4) shows that TpB = idTpIP(V)

holds, whence B = idIP(V) follows by the rigidity of isometries. Thus Proposition 3.1(c) shows

that B = λ · idV holds for some λ ∈ S1 . �

3.2 Q as a Hermitian symmetric Auts(A)0-space

In the following proposition we explain in what way the complex quadric Q is a Hermitian

symmetric Auts(A)0-space (Q,Ψ, p0, σ) (compare Appendix A.2, where the view of symmetric

spaces as such a “datum” is described under the heading “Lie theoretical approach”).

We denote by π : S(V) → IP(V) the Hopf fibration and abbreviate
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G := Auts(A)0 ;

then we have for any A ∈ A :

G = {B ∈ U(V) |B ◦A = A ◦ B, det(B) = 1 } .

Moreover, we denote by g := auts(A) the Lie algebra of G and consider its Killing form

κ : g × g → IR . κ has been described explicitly in Proposition 2.17(a), see Equation (2.6). G

acts on Q via the Lie group action Ψ : G×Q→ Q described in Corollary 3.4.

3.9 Proposition. Let p0 ∈ Q be given, say p0 = π(z0) with z0 ∈ Q̃ .

(a) W := spanA{z0} is a 2-dimensional CQ-subspace of V which depends only on p0 , not on

the choice of z0 ∈ π−1({p0}) . We denote the induced CQ-structure of the CQ-subspaces

W and W⊥ by AW and AW⊥ , respectively. The isotropy group K of Ψ at p0 is then

given by

K = { B ∈ G | B|W ∈ Auts(AW )0 } . (3.6)

Moreover, the map

F : K → Auts(AW )0 × Auts(AW⊥)0, B 7→ (B|W, B|W⊥)

is an isomorphism of Lie groups, consequently K is connected.

(b) The image of the isotropy representation

Θ : K → U(Tp0Q), B 7→ Tp0(B|Q)

is Aut(A(Q, p0))0 . Θ is injective for m odd, whereas its kernel is {±idV} for m even.

It follows that Θ : K → Aut(A(Q, p0))0 is an isomorphism of Lie groups for m odd,

a two-fold covering map of Lie groups for m even. Moreover, the action Ψ is almost

effective.

(c) Let S : V → V be the linear involution characterized by

S|W = idW and S|W⊥ = −idW⊥ .

Then we have −S ∈ G , and the involutive Lie group automorphism

σ : G→ G, B 7→ S ◦ B ◦ S−1

satisfies Fix(σ)0 = K .

Consequently (Q,Ψ, p0, σ) is a Hermitian symmetric G-space in the sense of the “Lie

theoretical approach” of Appendix A.2; its canonical covariant derivative is identical to

the Levi-Civita covariant derivative of Q . This symmetric space is of compact type; it is

irreducible for m 6= 2 .
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(d) The canonical decomposition g = k ⊕ m with respect to σ is given by

k = {X ∈ g |X(W ) ⊂W, X(W⊥) ⊂W⊥ } , (3.7)

m = {X ∈ g |X(W ) ⊂W⊥, X(W⊥) ⊂W } . (3.8)

Proof. For (a). Let us fix A ∈ A . Clearly, W = Cz0 	 CAz0 is a 2-dimensional CQ-subspace

of V and Y := V (A|W ) = W ∩ V (A) is a real-2-dimensional subspace of V (A) . Immediately

we will show

K = { B ∈ G | B|Y ∈ SO(Y ) } ; (3.9)

Equation (3.6) follows therefrom by Proposition 2.17(a).

To prove Equation (3.9), we first note that with x :=
√

2 ReA z0 and y :=
√

2 ImA z0 , (x, y)

is an orthonormal basis of Y by Proposition 2.23(b). For given B ∈ G we have:

B ∈ K ⇐⇒ B(p0) = p0 ⇐⇒ ∃λ ∈ S1 : Bz0 = λz0

⇐⇒ ∃ (a+ ib) ∈ S1 : Bx+ JBy = (a+ ib)(x+ Jy) = (ax− by) + J(bx+ ay)

⇐⇒ ∃ (a+ ib) ∈ S1 : (Bx = ax− by and By = bx+ ay) ;

this calculation shows that B ∈ K holds if and only if B(Y ) = Y holds and there exist

a, b ∈ IR with a2 + b2 = 1 so that B|Y is represented by the matrix
(
a b
−b a

)
with respect to the

orthonormal basis (x, y) of Y . But this is the case if and only if B|Y ∈ SO(Y ) holds. Thus

we have shown Equation (3.9).

For any B ∈ G , we have B|V (A) ∈ SO(V (A)) by Proposition 2.17(a). Therefore, we have for

any B ∈ K besides B|Y ∈ SO(Y ) also B|Y ⊥,V (A) ∈ SO(Y ⊥,V (A)) . It follows that

K → SO(Y ) × SO(Y ⊥,V (A)), B 7→ (B|Y, B|Y ⊥,V (A))

is an isomorphism of Lie groups, whence the statement on F follows via Proposition 2.17(a).

For (b). It is clear that Θ is a homomorphism of Lie groups. Let B ∈ K be given, then we

have

B ∈ ker(Θ) ⇐⇒ Tp0(B|Q) = idTp0Q
(∗)⇐⇒ B|Q = idQ

(†)⇐⇒ B ∈ {λ idV |λ ∈ S1 } ∩ G .

Here the equivalence marked (∗) is a consequence of the rigidity of isometries, and the equiva-

lence marked (†) is justified by Proposition 3.8. We have {λ idV |λ ∈ S1 } ∩ Auts(A) = {±idV} ,

and Proposition 2.17(a) shows that −idV ∈ G holds if and only if m is even. This shows that

Θ is injective for m odd and has kernel {±idV} for m even.

Proposition 3.2(a) shows that Θ(K) ⊂ Aut(A(Q, p0)) holds; because K is connected, we in

fact have Θ(K) ⊂ Aut(A(Q, p0))0 . Because the kernel of Θ is discrete and

dimK = dim(Auts(AW )0 × Auts(AW⊥)0) = 1 + m(m−1)
2 = dimAut(A(Q, p0))0

holds (see (a) and Proposition 2.17), it follows that Θ(K) = Aut(A(Q, p0))0 holds. The state-

ment about Θ : K → Aut(A(Q, p0))0 being an isomorphism or a two-fold covering map of Lie

group now follows immediately.



74 Chapter 3. Isometries of the complex quadric

For B ∈ G we have

ΨB = idQ ⇐⇒
(
B ∈ K and Θ(B) = idTpQ

)
⇐⇒ B ∈ {±idV} ∩G

because of the rigidity of isometries and the preceding result on ker(Θ) . This shows that Ψ is

almost effective.

For (c). S is the complexification of the linear map S ′ : V (A) → V (A) characterized by

S′|Y = idY and S′|Y ⊥,V (A) = −idY ⊥,V (A) . We have −S ′ ∈ SO(V (A)) and therefore −S ∈ G

by Proposition 2.17(a). Because we have σ(B) = (−S) ◦B ◦ (−S)−1 for every B ∈ G and −S
is involutive, we see that σ : G → G is an involutive Lie group automorphism of G . We will

now show

Fix(σ) = {B ∈ G |B|W ∈ Auts(AW ) } . (3.10)

First, let B ∈ Fix(σ) be given. Then we have S ◦ B = B ◦ S and therefore B leaves the

eigenspace Eig(S, 1) = W invariant. Because of B ∈ Auts(A) it follows that B|W ∈ Auts(AW )

holds. Conversely, let B ∈ G be given such that B|W ∈ Auts(AW ) holds. Then the unitary

transformation B leaves the spaces W = Eig(S, 1) and W ⊥ = Eig(S,−1) invariant. Because

we have V = Eig(S, 1) 	 Eig(S,−1) , it follows that B ◦ S = S ◦ B and therefore B ∈ Fix(σ)

holds. This completes the proof of Equation (3.10).

It follows from Equation (3.10) that Fix(σ)0 = {B ∈ G |B|W ∈ Auts(AW )0 }
(a)
= K holds and

thus we have

K ⊂ Fix(σ) and dimK = dimFix(σ) .

Because G acts by Ψ transitively and via holomorphic isometries on Q , and Ψ is almost

effective by (b), it follows that (Q,Ψ, p0, σ) is a Hermitian symmetric G-space. The claim

that the canonical covariant derivative of this symmetric space is identical to the Levi-Civita

covariant derivative of Q is just a rephrasing for Q of the fact that any Riemannian symmetric

space is naturally reductive with its canonical reductive structure, see Appendix A.3. It follows

from Equation (2.6) in Proposition 2.17 that the Killing form κ of g is negative definite, and

therefore the Hermitian symmetric G-space Q is of compact type. Moreover, for m 6= 2 ,

Θ(K) = Aut(A(Q, p0))0 acts irreducibly on Tp0Q by Proposition 2.39(b), and therefore Q is

then irreducible.

For (d). The linearization of the Lie group automorphism σ is given by

σL : g → g, X 7→ S ◦X ◦ S−1 .

For X ∈ g we therefore have X ∈ k = Eig(σL, 1) if and only if X and S commute, which is

the case if and only if X leaves the spaces Eig(S, 1) = W and Eig(S,−1) = W ⊥ invariant.

Similarly, we have X ∈ m = Eig(σL,−1) if and only if X(Eig(S,±1)) ⊂ Eig(S,∓1) holds. �

3.10 Remarks. (a) Proposition 3.9(a) shows that Q is as a homogeneous space isomorphic to

the quotient space G/K . For fixed A ∈ A , G is (via B 7→ B|V (A) ) isomor-

phic to SO(V (A)) ∼= SO(m + 2) (see Proposition 2.17(a)), and similarly, K is iso-

morphic to SO(2) × SO(m) . Thus we obtain the conventional quotient representation

SO(m+ 2)/(SO(2) × SO(m)) of Q .
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(b) In the case m = 2 , Q is indeed reducible. In fact, as we will see in Section 3.4, Q2 is as

a Hermitian symmetric space isomorphic to IP1 × IP1 .

3.11 Proposition. Q is an extrinsically symmetric submanifold of IP(V) ; this means that for every

p ∈ Q there exists an isometry s̃p ∈ I(IP(V)) with s̃p(p) = p and s̃p(Q) = Q so that Tps̃p :

TpIP(V) → TpIP(V) is the reflection in the normal space of Q at p (see for example [NT89],

p. 157). Note that s̃p|Q is the geodesic symmetry of Q at p (see the “geometric approach” in

Appendix A.2).

Proof. Let p ∈ Q be given, fix z ∈ π−1({p}) , put W := spanA{z} and consider the linear

involution S : V → V characterized by

S|W = idW and S|W⊥ = −idW⊥ ;

note that we already used S for p = p0 to describe the Lie group automorphism σ : G→ G in

Proposition 3.9. We have S ∈ Auts(A) , and therefore s̃p := S ∈ Ih(IP(V)) leaves Q invariant

by Proposition 3.2(a); moreover we have s̃p(p) = p and Tps̃p is the reflection in the normal

space of Q at p . �

Let us fix p0 ∈ Q and consider the Hermitian symmetric G-space (Q,Ψ, p0, σ) and the canonical

decomposition g = k ⊕ m as in Proposition 3.9. We have the canonical isomorphism

τ : m → Tp0Q, X 7→ ḋ

dt

∣∣∣
t=0

(
(Exp(tX))(p0)

)
,

where Exp : g → G is the exponential map of G . Remember that for every B ∈ K (where K

is the isotropy group of the action Ψ at p0 ), the diagram

m
Ad(B)|m

//

τ
��

m

τ
��

Tp0Q Tp0B
// Tp0Q

commutes, and that if we denote by R the curvature tensor of Q ,

∀X,Y,Z ∈ m : R(τ(X), τ(Y ))τ(Z) = −τ([[X,Y ], Z]) (3.11)

holds (see Equations (A.11) and (A.12)).

In the sequel, we equip m with the complex structure Jm , the complex inner product 〈·, ·〉mC
(which induces the real inner product 〈·, ·〉mIR = Re(〈·, ·〉mC) ) and the CQ-structure Am such that

the linear isomorphism τ : m → Tp0Q becomes a CQ-isomorphism.

It is the objective of the following proposition to provide explicit descriptions of τ and of the

structures we equipped m with. It shows in particular that the real inner product 〈·, ·〉m
IR is a

negative multiple of the Killing form κ of g ; this fact enables us to apply the root theory as

described in Appendix A.4 to the present situation.
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We note that for any z0 ∈ π−1({p0}) and every X ∈ m , we have X(z0) ∈W⊥ =
−−−→Hz0Q (where

W is as in Proposition 3.9(a); note Proposition 3.9(d) and Theorem 2.26), therefore there exists

one and only one map ẑ0 : m → Hz0Q characterized by

∀X ∈ m :
−−−→
ẑ0(X) = X(z0) . (3.12)

It is clear that ẑ0 is C-linear. Moreover, every given X ∈ m commutes with A ∈ A , is skew-

Hermitian and satisfies besides X(W ) ⊂W⊥ also X(W⊥) ⊂W (again see Proposition 3.9(d));

because of these properties X is already uniquely determined by X(z0) =: v , namely via the

equations

∀w ∈W : X(w) = 〈w, z0〉C v + 〈w,Az0〉CAv (3.13)

and

∀w′ ∈W⊥ : X(w′) = −
(
〈w′, v〉C z0 + 〈w′, Av〉C Az0

)
. (3.14)

Consequently, ẑ0 is an isomorphism of C-linear spaces. As the following proposition shows, this

isomorphism is closely related to the isomorphism τ we wish to describe.

We call in mind that Hz0Q is a CQ-subspace of Tz0V by Theorem 2.26, and that the map

Hz0Q→W⊥, v 7→ −→v is a CQ-isomorphism.

3.12 Proposition. We fix z0 ∈ π−1({p0}) and put W := spanA{z0} as in Proposition 3.9.

(a) We have

τ = π∗ ◦ ẑ0 . (3.15)

It follows by means of Theorem 2.26 that ẑ0 : m → Hz0Q is an isomorphism of CQ-

spaces, and we obtain the following commutative diagram, where all arrows represent CQ-

isomorphisms:

m
bz0 //

τ
""EE

EE
EE

EE
E Hz0Q

π∗|Hz0Q

��
Tp0Q .

(3.16)

(b) For every X,Y ∈ m , we have

〈X,Y 〉mIR = − 1
4m · κ(X,Y ) , (3.17)

where κ is the Killing form of g . Moreover, we have for every X ∈ m

(JmX)(z0) = J(Xz0) (3.18)

and Am = {Am |A ∈ A } , where for every A ∈ A the conjugation Am : m → m satisfies

(AmX)(z0) = A(Xz0) . (3.19)

Note that because of Equations (3.13) and (3.14), Equations (3.18) and (3.19) characterize

Jm resp. Am uniquely.
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(c) Let us denote by Rm the curvature tensor of the CQ-space m in the sense of Section 2.7.

Then we have

∀X,Y,Z ∈ m : Rm(X,Y )Z = −[[X,Y ], Z] .

3.13 Remark. The information from Propositions 3.9(d) and 3.12(a) can be used to obtain an ex-

plicit description of the geodesics of Q : For any v ∈ Tp0Q , the maximal geodesic γv : IR → Q of

Q with γv(0) = p0 and γ̇v(0) = v is given by γv(t) = Ψ(Exp(tX), p0) , where X := τ−1(v) ∈ m

and Exp : g → G is the exponential map of G .

In Section 5.4, we will instead describe the geodesics of Q via an explicit description of the

maximal tori of the symmetric space Q .

Proof of Proposition 3.12. For (a). We let X ∈ m be given. Again denoting by Exp : g → G

the exponential map of G , we then have

−−−→
ẑ0(X) = X(z0) =

−−−−−−−−−−−−→
ḋ

dt

∣∣∣
t=0

Exp(tX)z0

and hence

ẑ0(X) =
ḋ

dt

∣∣∣
t=0

Exp(tX)z0 .

Therefrom we obtain

π∗ ◦ ẑ0(X) = π∗
ḋ

dt

∣∣∣
t=0

Exp(tX)z0 =
ḋ

dt

∣∣∣
t=0

(
π ◦ Exp(tX)z0

)
=

ḋ

dt

∣∣∣
t=0

(
Exp(tX)(p0)

)
= τ(X)

and therefore Equation (3.15).

Because (π∗|Hz0Q) : Hz0Q → Tp0Q and τ : m → Tp0Q are CQ-isomorphisms, it follows from

Equation (3.15) that also ẑ0 : m → Hz0Q is a CQ-isomorphism.

For (b). ẑ0 : m → Hz0Q is a CQ-isomorphism by (a), and therefore (
−→
. . .)◦ ẑ0 : m → −−−→Hz0Q, X 7→

X(z0) also is a CQ-isomorphism. Equations (3.18) and (3.19) are obvious consequences of this

fact.

For the proof of Equation (3.17), we fix A ∈ A . Any X ∈ m is a skew-Hermitian map

X : V → V which interchanges the spaces W and W⊥ by Proposition 3.9(d), and therefore we

have

(X|W⊥) = −(X|W )∗ : W⊥ →W , (3.20)

where we denote for any C-linear map Z : W →W⊥ by Z∗ : W⊥ →W the adjoint map of Z .

For unitary spaces V1, V2 we now denote the usual inner product on L(V1, V2) by 〈〈·, ·〉〉L(V1 ,V2) .

It should be noted that with respect to an arbitrary basis (b1, . . . , br) of V1

∀X,Y ∈ L(V1, V2) : 〈〈X,Y 〉〉L(V1 ,V2) =
r∑

k=1

〈Xbk, Y bk〉C (3.21)

holds, and that we have

∀X,Y ∈ L(V1, V2) : 〈〈X∗, Y ∗〉〉L(V2,V1) = 〈〈X,Y 〉〉L(V1,V2) . (3.22)
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We now obtain for any X,Y ∈ m via Equation (2.6) in Proposition 2.17(a):

κ(X,Y )
(2.6)
= (−m) · 〈〈X,Y 〉〉L(V,V) = (−m) · (〈〈X|W,Y |W 〉〉L(W,W⊥) + 〈〈X|W⊥, Y |W⊥〉〉L(W⊥,W ))

(3.20)
= (−m) · (〈〈X|W,Y |W 〉〉L(W,W⊥) + 〈〈−(X|W )∗,−(Y |W )∗〉〉L(W⊥,W ))

(3.22)
= (−2m) · 〈〈X|W,Y |W 〉〉L(W,W⊥)

(∗)
= (−2m) · (〈Xz0, Y z0〉C + 〈XAz0, Y Az0〉C)

= (−2m) · (〈Xz0, Y z0〉C + 〈AXz0, AY z0〉C) = (−2m) · (〈Xz0, Y z0〉C + 〈Xz0, Y z0〉C)

= (−4m) · Re(〈Xz0, Y z0〉C) = (−4m) · 〈Xz0, Y z0〉IR
(†)
= (−4m) · 〈X,Y 〉mIR ,

where for (∗) we used Equation (3.21) and the fact that (z0, Az0) is a unitary basis of W , and

(†) follows from the fact that m →W⊥, X 7→ X(z0) is a linear isometry.

For (c). This follows immediately from Equation (3.11) and the fact that τ : m → Tp0Q is a

CQ-isomorphism. �

3.14 Remark. The curvature tensor of the CQ-space m (which is conjugate to the curvature tensor

of Q under the CQ-isomorphism τ : m → Tp0Q ) can be described, as Proposition 2.47 shows,

by the functions ρ and C defined in that proposition. Because of Proposition 3.12(c) we

therefore have a relationship between these functions and the “double Lie bracket” m×m×m →
m, (X,Y,Z) 7→ [[X,Y ], Z] . It is interesting, however, to note that ρ = ρm and C = Cm can

already be expressed by a single Lie bracket, i.e. via the map m × m → k, (X,Y ) 7→ [X,Y ] , as

it is now described.

We let X,Y ∈ m be given. Then we have Z := [X,Y ] ∈ k , and this element is determined

uniquely by Z(z0) and Z|W⊥ (because Z ∈ auts(A) holds and we have V = spanA{z0}⊕W⊥ ).

Abbreviating u := X(z0) ∈W⊥ and v := Y (z0) ∈W⊥ , we obtain

Z(z0) = (XY − Y X)z0 = Xv − Y u

(3.14)
= −〈v, u〉Cz0 − 〈v,Au〉CAz0 + 〈u, v〉Cz0 + 〈u,Av〉CAz0
= (〈u, v〉C − 〈v, u〉C) z0 = 2i · Im(〈u, v〉C) z0 = 2〈u, Jv〉IR Jz0
= 2〈X, JmY 〉mIR · Jz0 = ρm(X,Y ) · Jz0 ,

and also for every w ∈W⊥ (where ∧ has the same meaning as in Equation (2.36))

Z(w) = (XY − Y X)w

(3.14)
= X

(
− (〈w, v〉Cz0 + 〈w,Av〉CAz0)

)
− Y

(
− (〈w, u〉Cz0 + 〈w,Au〉CAz0)

)

= −〈w, v〉Cu− 〈w,Av〉CAu+ 〈w, u〉Cv + 〈w,Au〉CAv
= −(u ∧ v +Au ∧Av)w = −CW⊥

(u, v)w ,

where CW⊥
is the function defined in Proposition 2.47 for the CQ-space W ⊥ . By pull back

with the CQ-isomorphism ψ := (
−→
. . .)◦ ẑ0 : m →W⊥, X 7→ X(z0) , we obtain from the preceding

equation

ψ−1 ◦ Z ◦ ψ = −Cm(X,Y ) .

This provides the promised representations of ρm and Cm in terms of Z = [X,Y ] .
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We now study Q from the point of view of the root theory for symmetric spaces. In particular,

we describe the Cartan subalgebras, the roots and the root spaces of m explicitly in terms of

the CQ-space structure of m .

An exposition of the root theory is given in Appendix A.4, where the terms and notations

involved in the following are also introduced. For the applicability of that theory, it is of

importance that Q is a Riemannian symmetric space of compact type (see Proposition 3.9(c))

and that the inner product we consider on m here is a negative multiple of the Killing form of

g (see Proposition 3.12(b)).

We now suppose m ≥ 2 and continue to regard m as a CQ-space.

3.15 Theorem. (a) The flat subspaces of m in the usual sense (see Proposition A.6) coincide with

the flat subspaces of the CQ-space m in the sense of Definition 2.52. Therefore it follows

from Theorem 2.54:

The Hermitian symmetric space Q is of rank 2 , and the Cartan subalgebras (i.e. the

2-dimensional flat subspaces) a of m are exactly the spaces

a = IRX ⊕ IRJmY

with A ∈ Am , X,Y ∈ S(V (A)) , 〈X,Y 〉mIR = 0 .

(b) Let a = IRX ⊕ IRJmY be a Cartan subalgebra of m as in (a). Then the following table

gives besides λ0 := 0 ∈ a∗ a system of positive roots λk of m with respect to a (via their

Riesz vectors λ]k ), together with the corresponding root spaces mλk
and their multiplicities

nλk
:

k λ]k ∈ a mλk
nλk

0 0 IRX 	 IRJmY 2

1
√

2 · JmY Jm((IRX 	 IRY )⊥) m− 2

2
√

2 ·X (IRX 	 IRY )⊥ m− 2

3
√

2 · (X − JmY ) IR(JmX + Y ) 1

4
√

2 · (X + JmY ) IR(JmX − Y ) 1

Here ⊥ denotes the ortho-complement in V (A) . In the case m = 2 the roots λ1 and λ2

do not exist: their multiplicity is zero.

(c) Let Z ∈ m be given. Then there exists a Cartan algebra a ⊂ m with Z ∈ a .

3.16 Remark. As was already mentioned in Theorem A.8(b), assertion (c) of the above theorem is

true for Riemannian symmetric spaces of compact type in general. But for the present specific

situation, we can give an elementary proof by use of the CQ-structure on m .

Proof of Theorem 3.15. We derive the theorem from the results of Sections 2.7 and 2.8 via

Proposition 3.12(c). In particular we see from the latter proposition that the flat subspaces of

m in the usual sense (see Proposition A.6) coincide with the flat subspaces of the CQ-space m
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in the sense of Definition 2.52. Therefore (a) follows from Theorem 2.54, and (c) follows from

Corollary 2.55.

It remains to prove (b). For this, we denote for any Z ∈ m the Jacobi operator corresponding

to Z by Rm
Z := Rm( · , Z)Z : m → m , and put for t ∈ IR

Z(t) := cos(t)X + sin(t)JmY ∈ a ;

note that S(a) = {Z(t) | t ∈ IR } holds.

To derive the data on the root system and the root spaces of m , we use Proposition A.11. As

we did there, we define for any function µ : a → IR

Eµ :=
⋂

Z∈a

Eig(RZ , µ(Z))

and

Σ := {µ : a → IR |Eµ 6= {0} } .

Theorem 2.49 shows that in the present setting we have Σ = {µ0, . . . , µ4} , where the functions

µk : a → IR are characterized by

∀t, s ∈ IR : µk(sZ(t)) = s2 · κk(t) (3.23)

via the eigenfunctions κk from Theorem 2.49; note that µ0 = 0 holds. We also have Eµk
= Ek ,

where the spaces Ek are also those of Theorem 2.49.

By Equation (A.29) in Proposition A.11(a) we now have

∆ = {±λ1, . . . ,±λ4}

where the linear forms λk ∈ a∗ \ {0} are up to sign characterized by

λ2
k = µk . (3.24)

This equation and the information from Theorem 2.49 permits to calculate the Riesz vectors of

the roots λk explicitly; for example one has for every t ∈ IR

λ1(Z(t))2 = κ1(t) = 1 − cos(2t) = 2 sin(t)2 = (〈Z(t),
√

2 JmY 〉mIR)2 ;

therefrom λ]1 = ±
√

2 JmY follows. By an appropriate choice of sign one sees that the vectors

given as λ]k in the table indeed form a positive root system for m .

Finally we have for k ∈ {1, . . . , 4} by Equation (A.30)

mλk
= Eλ2

k
= Eµk

= Ek . �
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3.3 Curvature-equivariant maps and the classification of isometries of Q

We now prove that there do not exist holomorphic or anti-holomorphic isometries on a complex

quadric besides those described in Theorem 3.5. Also, if the dimension of the quadric is 6= 2 ,

then any of its isometries is either holomorphic or anti-holomorphic.

The crucial point in the proof is to show that any curvature-equivariant C-linear isometry

between CQ-spaces already is a CQ-isomorphism, and that any curvature-equivariant IR-linear

isometry between CQ-spaces of dimension 6= 2 is either C-linear or anti-linear, and thus either

a CQ-isomorphism or a CQ-anti-isomorphism (Theorem 3.18).

3.17 Proposition. Suppose m ≥ 2 ; let (W,A) and (W′,A′) be two m-dimensional CQ-spaces and

B : W → W′ be a curvature-equivariant IR-linear isometry. Here and in the following, we

denote the objects derived from W′ (for example, its curvature tensor) by appending a ′ to the

symbol for the corresponding object of W .

(a) If a is a 2-flat of W , then B(a) is a 2-flat of W′ .

(b) For any w ∈ W , we have B ◦ Rw = R′
Bw ◦ B ; in particular, we have Spec(R′

Bw) =

Spec(Rw) and for any c ∈ IR we have Eig(R′
Bw, c) = B(Eig(Rw, c)) .

(c) For any w ∈ W \ {0} we have ϕ′(Bw) = ϕ(w) , and therefore M ′
t = B(Mt) for every

t ∈ [0, π4 ] and Q̂(A′) = B(Q̂(A)) .

Proof. (a) and (b) are obvious consequences of B being a curvature-equivariant IR-linear

isomorphism. Because of Corollary 2.51, (b) also implies that ϕ′(Bw) = ϕ(w) holds for any

w ∈ W \ {0} , and M ′
t = B(Mt) follows for any t ∈ [0, π4 ] because B is a linear isometry.

Finally, we have Q̂(A′) = IR+ ·M ′
π/4 = IR+ · B(Mπ/4) = B(Q̂(A)) , see Example 2.37. �

3.18 Theorem. Let (W,A) and (W′,A′) be two m-dimensional CQ-spaces and B : W → W′ be a

curvature-equivariant IR-linear isometry.

(a) If B is C-linear, then B is a CQ-isomorphism.

(b) If B is anti-linear, then B is a CQ-anti-isomorphism.

(c) If m 6= 2 holds, then B is either C-linear or anti-linear.

Proof. For (a). In the case m = 1 , any C-linear isometry B : W → W′ is a CQ-isomorphism

(such an isometry is then automatically curvature-equivariant), see Example 2.11. Thus, we

may now suppose m ≥ 2 . Let A ∈ A be given. Because B is a C-linear isometry, the

map A′ := B ◦ A ◦ B−1 is a conjugation on W′ and we have by Proposition 1.11(a) and

Proposition 3.17(c)

Q̂(A′) = B(Q̂(A)) = Q̂(A′) .

By Proposition 1.10, it follows that A′ ∈ A′ holds and therefore B is a CQ-isomorphism.
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For (b). Let A′ ∈ A′ be given. Because B is anti-linear, A′ ◦ B is C-linear, and A′ ◦ B is a

curvature-equivariant linear isometry along with A′ and B (for the curvature-equivariance of

A′ see Proposition 2.45). By (a), we see that A′ ◦ B is a CQ-isomorphism, and hence B is a

CQ-anti-isomorphism.

We prepare the proof of (c) with a technical lemma:

3.19 Lemma. Suppose m ≥ 2 , let B : W → W′ be a curvature-equivariant IR-linear isometry, and

let A ∈ A and an orthonormal system (x, y) in V (A) be given. Then there exists A ′ ∈ A′ and

an orthonormal system (x′, y′) in V (A′) so that

Bx = x′ and B(Jy) = J ′y′ (3.25)

holds. Moreover, there exists ε ∈ {±1} so that one of the following distinctive cases holds:

(1) B(Jx) = ε · J ′x′ ∈ J ′V (A′) and By = ε · y′ ∈ V (A′)

(2) B(Jx) = ε · y′ ∈ V (A′) and By = ε · J ′x′ ∈ J ′V (A′)

3.20 Remark. As we will see in the proof of Theorem 3.18(c) below, case (2) can in fact only occur

for m = 2 .

Proof of Lemma 3.19. Theorem 2.54 shows that a := IRx⊕ IRJy is a 2-flat of W , a′ := B(a)

therefore is a 2-flat of W′ by Proposition 3.17(a), and by a further application of Theorem 2.54

it follows that there exists A′ ∈ A′ and an orthonormal system (x′, y′) in V (A′) with a′ =

IRx′ ⊕ IRJ ′y′ . We have a ∩ M0 = {±x,±Jy} and a′ ∩ M ′
0 = {±x′,±J ′y′} and therefore

Proposition 3.17(c) shows

{±Bx,±B(Jy)} = B(a ∩M0) = a′ ∩M ′
0 = {±x′,±J ′y′} . (3.26)

In particular, we have Bx ∈ {±x′,±J ′y′} .

a′ = IRx′′ ⊕ IRJ ′y′′ with x′′ := J ′y′ ∈ J ′V (A′) = V (−A′) and y′′ := J ′x′ ∈ J ′V (A′) = V (−A′)
is another representation of a′ of the kind of Theorem 2.54. Therefore we can ensure Bx ∈
{±x′} by replacing (A′, x′, y′) with (−A′, x′′, y′′) if necessary. Then Equation (3.26) shows that

B(Jy) ∈ {±J ′y′} holds, because B(Jy) is orthogonal to Bx . By adjusting the signs of x′ and

y′ where necessary, we can therefore arrange

Bx = x′ and B(Jy) = J ′y′ . (3.27)

Now, put t := π
8 and w := cos(t)x+ sin(t)Jy ; by Equations (3.27), we have Bw = cos(t)x′ +

sin(t)J ′y′ . By combining Theorem 2.49 with Proposition 3.17(b), we see

IR(J ′x′ + y′) = Eig(R′
Bw, κ3(t)) = B(Eig(Rw, κ3(t))) = IR(B(Jx) +By) and

IR(J ′x′ − y′) = Eig(R′
Bw, κ4(t)) = B(Eig(Rw, κ4(t))) = IR(B(Jx) −By) .



3.3. Curvature-equivariant maps and the classification of isometries of Q 83

Because B is an IR-linear isometry, it follows that there exist ε1, ε2 ∈ {±1} so that

B(Jx) +By = ε1 · (J ′x′ + y′) and B(Jx) −By = ε2 · (J ′x′ − y′) (3.28)

holds.

In the case ε1 = ε2 =: ε , Equations (3.28) show that we have

B(Jx) = ε J ′x′ ∈ J ′V (A′) and By = ε y′ ∈ V (A′)

and therefore case (1) of the lemma holds.

In the case ε := ε1 = −ε2 , we analogously see that we have

B(Jx) = ε y′ ∈ V (A′) and By = ε J ′x′ ∈ J ′V (A′)

and hence, case (2) of the lemma holds. �

Proof of Theorem 3.18(c). If m = 1 holds, let us fix x ∈ S(W) and put x′ := Bx ∈ S(W′) .

In this setting, we either have B(Jx) = J ′x′ , and then B is C-linear, or else B(Jx) = −J ′x′ ,

and then B is anti-linear.

Therefore, we may now suppose m ≥ 3 . Let A ∈ A and x ∈ S(V (A)) be given. We extend x

to an orthonormal system (x, y, z) in V (A) .

By applying Lemma 3.19 to the orthonormal system (x, y) , we see that there exists A ′ ∈ A′

and an orthonormal system (x′, y′) in V (A′) with Bx = x′ and B(Jy) = J ′y′ .

We now show by contradiction that case (2) of the lemma cannot occur in the present situation.

Assuming that case (2) holds, we have B(Jx) ∈ V (A′) . We apply the lemma to the orthonormal

system (x, z) of V (A) . Thus, there exists Ã′ ∈ A′ and an orthonormal system (x̃′, z̃′) in

V (Ã′) with Bx = x̃′ and B(Jz) = J ′z̃′ . We have x̃′ = Bx = x′ and therefore 0 6= Bx ∈
V (A′) ∩ V (Ã′) , whence Ã′ = A′ follows. Because we have B(Jx) ∈ V (A′) = V (Ã′) by

assumption, we see that case (2) of the lemma also holds with respect to (x, z) .

Because case (2) of the lemma thus holds both with respect to (x, y) and to (x, z) , there exist

ε, ε̃ ∈ {±1} so that ε̃ · z̃ ′ = B(Jx) = ε · y′ and therefore z̃′ = εε̃ · y′ holds. We have

z̃′ = εε̃ y′ =⇒ J ′z̃′ = εε̃ J ′y′
(3.25)
=⇒ B(Jz) = εε̃ B(Jy) =⇒ Jz = εε̃ Jy =⇒ z = εε̃ y ,

which is a contradiction to y and z being orthogonal to each other.

Therefore, with regard to the orthonormal system (x, y) case (1) of the lemma holds. Hence,

there exists ε ∈ {±1} so that

B(Jx) = ε · J ′x′ = ε · J ′(Bx)

holds. Thus, we have shown

∀A ∈ A, x ∈ S(V (A)) ∃ ε(x) ∈ {±1} : B(Jx) = ε(x) · J ′(Bx) .
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Because M0 =
⋃̇
A∈AS(V (A)) is connected, the continuous map M0 → {±1}, x 7→ ε(x) is

constant; in other words, there exists ε ∈ {±1} so that (B ◦ J)|M0 = ε · (J ′ ◦ B)|M0 holds.

Because spanIR(M0) = W holds, we conclude B ◦ J = ε · J ′ ◦ B . Therefore, B is C-linear for

ε = 1 and anti-linear for ε = −1 . �

3.21 Corollary. Let W be a 2m-dimensional euclidean space and R be a curvature-like tensor on

W .

(a) If W is in fact an m-dimensional unitary space, then there exists at most one CQ-structure

A on W so that R is the curvature tensor of the CQ-space (W,A) .

(b) For m 6= 2 there exist at most two orthogonal complex structures J and −J on W and

at most one CQ-structure on (W,±J) so that R is the curvature tensor of the CQ-space

(W,±J,A) .

Proof. This is an immediate consequence of Theorem 3.18. �

3.22 Lemma. Let M be a connected, affine, complex manifold so that the complex structure J of

M is parallel. Moreover, let an affine map f : M →M be given.

If there exists p0 ∈ M so that Tp0f : Tp0M → Tf(p0)M is C-linear or anti-linear, then f is

holomorphic resp. anti-holomorphic.

Proof. We suppose that Tp0f is C-linear; the anti-linear case is handled analogously. Let p ∈M

be given; we have to show that Tpf ◦Jp = Jf(p) ◦Tpf holds. Let v ∈ TpM be given. Because M

is connected, there exists a curve γ : [0, 1] → M with γ(0) = p0 and γ(1) = p . Let us denote

by X ∈ Xγ(M) the parallel vector field along γ with X1 = v . Because f is affine and J is a

parallel endomorphism field, both Tf ◦ J ◦ X and J ◦ Tf ◦ X are parallel vector fields along

f ◦ γ ; they coincide in 0 because Tp0f is C-linear, and therefore they are equal. In particular,

we have Tpf ◦ Jpv = Jf(p) ◦ Tpf(v) . �

3.23 Theorem. Let (V,A) be an (n = m + 2)-dimensional CQ-space and Q := Q(A) the corres-

ponding complex quadric.

(a) Ih(Q) = {B|Q |B ∈ Auts(A) } .

(b) Iah(Q) = {B|Q |B ∈ Aut(A) } .

(c) If m 6= 2 holds, then we have I(Q) = Ih(Q)∪̇Iah(Q) .

3.24 Remark. As we will see in Section 3.4, Q2 is holomorphically isometric to IP1 × IP1 . This

fact shows that there are indeed isometries on Q2 which are neither holomorphic nor anti-

holomorphic.
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Proof of Theorem 3.23. For (a). We already proved {B|Q |B ∈ Auts(A) } ⊂ Ih(Q) in Proposi-

tion 3.2(a). Conversely, let f ∈ Ih(Q) be given and fix p ∈ Q . Then, L := Tpf : TpQ→ Tf(p)Q

is a curvature-equivariant C-linear isometry and consequently a CQ-isomorphism by Theo-

rem 3.18(a). By Theorem 3.5(a), it follows that there exists B ∈ Auts(A) so that B|Q ∈ Ih(Q)

satisfies

B(p) = f(p) and Tp(B|Q) = L .

By the rigidity of isometries, it follows that f = B|Q holds.

For (b). The proof is analogous to (a).

For (c). Let f ∈ I(Q) be given. Once again, we fix p ∈ Q , then L := Tpf : TpQ → Tf(p)Q

is a curvature-equivariant IR-linear isometry. By Theorem 3.18(c) we thus see that L is either

C-linear or anti-linear. By Lemma 3.22, it follows that f is holomorphic resp. anti-holomorphic.

�

3.25 Corollary. Any (anti-)holomorphic isometry of Q can be extended to an (anti-)holomorphic

isometry of IP(V) .

Proof. Let an (anti-)holomorphic isometry f of Q be given. By Theorem 3.23(a),(b) there

exists B ∈ Auts(A) resp. B ∈ Aut(A) with f = B|Q . Proposition 3.1(a),(b) then shows that

B is an (anti-)holomorphic isometry of IP(V) . �

3.4 Q2 is isomorphic to IP1
× IP1 and therefore reducible

The two series Qm and IPn1−1 × IPn2−1 of Hermitian symmetric spaces intersect at one point,

namely Q2 is as Hermitian symmetric space isomorphic to IP1 × IP1 . As has already been

noted, it is a consequence of this fact that the symmetric space Q2 is not irreducible (unlike

complex quadrics of every other dimension, see Proposition 3.9(c)).

In the present section, we will construct the isomorphism Q2 ∼= IP1 × IP1 explicitly using the

Segre embedding, which is a holomorphic isometric embedding IPn1−1 × IPn2−1 → IPn1 n2−1 . It

will turn out that in the case n1 = n2 = 2 , its image is a 2-dimensional complex quadric in

IP3 . It should be mentioned that the coordinate-free description of the Segre embedding given

here is based on a discussion with Prof. H. Reckziegel.

The complex quadrics of dimension 1 , 3 , 4 and 6 are also isomorphic to members of other series

of Hermitian symmetric spaces. We will construct the corresponding isomorphisms explicitly in

Chapter 8.

At first, we let W1 and W2 be unitary spaces of arbitrary complex dimension n1 resp. n2 . We

further suppose that W1 is equipped with a conjugation W1 → W1, w 7→ w .
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We regard the complex projective spaces IP(W1) and IP(W2) as Hermitian manifolds via the

Fubini/Study metric as usual. Then the Hermitian manifold IP(W1) × IP(W2) becomes a Her-

mitian homogeneous (SU(W1) × SU(W2))-space via the Lie group action

(SU(W1) × SU(W2)) × (IP(W1) × IP(W2)) −→ IP(W1) × IP(W2) ,

( (B1, B2) , (p1, p2) ) 7−→ (B1 p1, B2 p2) .

Moreover, if we fix (p1, p2) ∈ IP(W1)× IP(W2) and denote for k ∈ {1, 2} by Sk : Wk → Wk the

C-linear transformation described by Sk|pk = idpk
and Sk|p⊥k = −idp⊥k

, then the involutive Lie

group automorphism

σ : SU(W1) × SU(W2) → SU(W1) × SU(W2), (B1, B2) 7→ (S1B1 S
−1
1 , S2B2 S

−1
2 )

describes a Hermitian symmetric structure on IP(W1) × IP(W2) ; in the sequel we will regard

IP(W1) × IP(W2) as a Hermitian symmetric (SU(W1) × SU(W2))-space in this way.

We now consider the C-linear space V := L(W1,W2) of C-linear maps W1 →W2 as a unitary

space with its canonical inner product, which we also denote by 〈·, ·〉 and which can via an

arbitrary unitary basis (a1, . . . , an1) of W1 be characterized by

∀T, S ∈ L(W1,W2) : 〈T, S〉 =

n1∑

k=1

〈Tak, Sak〉 . (3.29)

Note that V has complex dimension n1 n2 , and therefore the complex projective space IP(V) ,

which we regard as a Hermitian symmetric SU(V)-space as usual, has complex dimension

n1 n2 − 1 .

In the sequel, we denote by

π1 : S(W1) → IP(W1) , π2 : S(W2) → IP(W2) and π : S(V) → IP(V)

the Hopf fibrations of the respective unitary spaces.

3.26 Proposition. The map

b : W1 ×W2 → V, (w1, w2) 7→ 〈 · , w1〉w2 (3.30)

is C-bilinear and satisfies

∀w1 ∈W1, w2 ∈W2 : ‖b(w1, w2)‖ = ‖w1‖ · ‖w2‖ , (3.31)

in particular b(S(W1) × S(W2)) ⊂ S(V) .

Therefore, there exists one and only one map f : IP(W1)× IP(W2) → IP(V) so that the following

diagram commutes:

S(W1) × S(W2)
b //

π1×π2

��

S(V)

π

��
IP(W1) × IP(W2)

f
// IP(V) .

f is a holomorphic isometric embedding. f is called the Segre embedding.
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Proof. It is clear that b is C-bilinear. For the verification of Equation (3.31), let w1 ∈W1 and

w2 ∈W2 be given, and let (a1, . . . , an1) be a unitary basis of W1 . Then we have

‖b(w1, w2)‖2 = 〈b(w1, w2), b(w1, w2)〉 =

n1∑

k=1

〈
〈ak, w1〉w2 , 〈ak, w1〉w2

〉

=

n1∑

k=1

|〈ak, w1〉|2 · ‖w2‖2 = ‖w1‖2 · ‖w2‖2 ,

whence Equation (3.31) follows. The statement on the existence and uniqueness of f is an

immediate consequence.

Next, we show that f is injective. For this purpose, we let (w1, w2), (w
′
1, w

′
2) ∈ S(W1) × S(W2)

be given so that

f(π1(w1), π2(w2)) = f(π1(w
′
1), π2(w

′
2))

holds. Then there exists λ ∈ S1 so that

b(w1, w2) = λ · b(w′
1, w

′
2)

and therefore

∀v ∈W1 : 〈v, w1〉w2 = λ · 〈v, w′
1〉w′

2

holds. If we plug v := w1 ∈W1 into the latter equation, we obtain

〈w1, w1〉︸ ︷︷ ︸
=1

w2 = λ · 〈w1, w′
1〉︸ ︷︷ ︸

=:µ

w′
2 . (3.32)

Because both w2 and w′
2 are of unit length, we have |µ| = 1 ; because we also have |λ| = 1 , it

follows from the definition of µ that

1 = |〈w1, w′
1〉| = |〈w1, w′

1〉| = |〈w1, w
′
1〉|

holds, see Proposition 2.3(d). Because we also have ‖w1‖ = ‖w′
1‖ = 1 , we see that with respect

to w1 and w′
1 , equality holds in the complex Cauchy/Schwarz inequality. Hence there exists

ν ∈ C with

w1 = ν · w′
1 ; (3.33)

because both w1 and w′
1 are of unit length, we have |ν| = 1 . By Equations (3.33) and (3.32),

we have (w1, w2) = (ν w′
1, µw

′
2) and thus (π1(w1), π2(w2)) = (π1(w

′
1), π2(w

′
2)) . This completes

the proof of the injectivity of f .

Immediately, we will show that f is a holomorphic isometric immersion. Because its domain of

definition is compact, it then also follows that f is an embedding.

For the proof that f is a holomorphic isometric immersion, we let (w1, w2) ∈ S(W1) × S(W2)

be given. We denote by Hwk
⊂ Twk

S(Wk) (k ∈ {1, 2}) resp. Hb(w1,w2) ⊂ Tb(w1,w2)S(V) the

horizontal space of the Riemannian submersion πk resp. π at the point wk resp. b(w1, w2) .

By Equation (1.6) we have

−−→Hwk
= (Cwk)

⊥,Wk and
−−−−−−→Hb(w1,w2) = (C b(w1, w2))

⊥,V . (3.34)
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Also, if we identify the tangent space T(w1,w2)(S(W1)×S(W2)) with Tw1S(W1)⊕Tw2S(W2) , we

have

∀ (ξ1, ξ2) ∈ Tw1S(W1) ⊕ Tw2S(W2) :
−−−−−−−−−−−−→
(T(w1,w2)b)(ξ1, ξ2) = b(

−→
ξ1 , w2) + b(w1,

−→
ξ2 ) . (3.35)

To prove that f is isometrically immersive at the point (w1, w2) , it suffices to show that

b∗(Hw1 ⊕Hw2) ⊂ Hb(w1,w2) (3.36)

and

∀ (ξ1, ξ2) ∈ Hw1 ⊕Hw2 : 〈b∗(ξ1, ξ2), b∗(ξ1, ξ2)〉 = 〈(ξ1, ξ2), (ξ1, ξ2)〉 (3.37)

holds. From the fact that T(w1,w2)b is C-linear (as can be seen from Equation (3.35)), together

with (3.36), it then also follows that f is holomorphic at (w1, w2) .

For the proof of (3.36), let (ξ1, ξ2) ∈ Hw1 ⊕Hw2 be given. Then we have 〈−→ξ1 , w1〉 = 〈−→ξ2 , w2〉 = 0

by Equations (3.34). Letting (a1, . . . , an1) be a unitary basis of W1 , we therefore have by

Equation (3.35)

〈−−−−−−−−−−−−→(T(w1,w2)b)(ξ1, ξ2), b(w1, w2)〉 = 〈 b(−→ξ1 , w2) + b(w1,
−→
ξ2) , b(w1, w2)〉

=
∑

k

(〈
〈ak,

−→
ξ1 〉w2 + 〈ak, w1〉

−→
ξ2 , 〈ak, w1〉w2

〉)

=
∑

k

(
〈ak,

−→
ξ1 〉 〈ak, w1〉︸ ︷︷ ︸

(∗)
= 〈w1,ak〉

〈w2, w2〉︸ ︷︷ ︸
=1

+〈ak, w1〉 〈ak, w1〉 〈
−→
ξ2 , w2〉︸ ︷︷ ︸

=0

)

=

〈∑

k

〈w1, ak〉 ak ,
−→
ξ1

〉
= 〈w1,

−→
ξ1〉

(∗)
= 〈w1,

−→
ξ1〉 = 0

(for the equals signs marked (∗), see Proposition 2.3(d)), whence (T(w1,w2)b)(ξ1, ξ2) ∈ Hb(w1,w2)

follows by Equations (3.34).

For the proof of Equation (3.37), we let (ξ1, ξ2) ∈ Hw1 ⊕Hw2 be given. We first note that we

have by Equation (3.31):

〈b(−→ξ1 , w2), b(
−→
ξ1 , w2)〉 = ‖−→ξ1‖2 · ‖w2‖2 = ‖ξ1‖2

and 〈b(w1,
−→
ξ2), b(w1,

−→
ξ2)〉 = ‖w1‖2 · ‖−→ξ2‖2 = ‖ξ2‖2 ; (3.38)

we also have

〈b(−→ξ1 , w2), b(w1,
−→
ξ2)〉 =

∑

k

〈
〈ak,

−→
ξ1 〉w2 , 〈ak, w1〉

−→
ξ2
〉

=
∑

k

〈ak,
−→
ξ1〉 〈ak, w1〉 〈w2,

−→
ξ2〉︸ ︷︷ ︸

=0

= 0 .

(3.39)

Thus we obtain:

〈 −−−−−−−−−−−−→(T(w1,w2)b)(ξ1, ξ2) ,
−−−−−−−−−−−−→
(T(w1,w2)b)(ξ1, ξ2) 〉

(3.35)
= 〈 b(−→ξ1 , w2) + b(w1,

−→
ξ2) , b(

−→
ξ1 , w2) + b(w1,

−→
ξ2) 〉

= 〈b(−→ξ1 , w2), b(
−→
ξ1 , w2)〉︸ ︷︷ ︸

(3.38)
= ‖ξ1‖2

+ 〈b(−→ξ1 , w2), b(w1,
−→
ξ2 )〉︸ ︷︷ ︸

(3.39)
= 0

+ 〈b(w1,
−→
ξ2), b(

−→
ξ1 , w2)〉︸ ︷︷ ︸

(3.39)
= 0

+ 〈b(w1,
−→
ξ2), b(w1,

−→
ξ2)〉︸ ︷︷ ︸

(3.38)
= ‖ξ2‖2

= ‖ξ1‖2 + ‖ξ2‖2 = 〈(ξ1, ξ2), (ξ1, ξ2)〉 . �
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From now on, we suppose that also W2 is equipped with a conjugation, which we also denote

by w 7→ w . We will use the following notations: For any T ∈ L(W1,W2) , we denote by T ∗ ∈
L(W2,W1) the adjoint endomorphism of T ; we also consider the endomorphism T ∈ L(W1,W2)

characterized by

∀w ∈W1 : T (w) = T w . (3.40)

It should be noted that T
∗

= T ∗ holds; with respect to unitary bases of W1 and W2 which are

adapted to the respective conjugations on these spaces (see Definition 2.7(b)), this endomorphism

is represented by the transpose of the matrix representing T . Also, if W3 is another unitary

space equipped with a conjugation, we have

∀T ∈ L(W1,W2), S ∈ L(W2,W3) :
(

(S ◦ T )∗ = T ∗ ◦ S∗ and S ◦ T = S ◦ T
)
, (3.41)

where the notations S∗ and S are used analogously for S ∈ L(W2,W3) .

Applying the notations T ∗ and T also to endomorphisms of Wk ( k ∈ {1, 2} ), we moreover

note that we have

∀B ∈ SU(Wk) : B∗, B ∈ SU(Wk) . (3.42)

Proof of (3.42). Let B ∈ SU(Wk) be given. Then we obviously have B∗ = B−1 ∈ SU(Wk) . Moreover, if we fix

a unitary basis (a1, . . . , ank
) of Wk which is adapted to the conjugation on this space, then B transforms this

basis into another unitary basis of Wk , and therefore B ∈ U(Wk) holds. Again using the basis (ak) and the

Leibniz formula for the determinant, one easily sees

∀T ∈ End(Wk) : det(T ) = det(T ) ,

whence B ∈ SU(Wk) follows. �

3.27 Proposition. For every B1 ∈ SU(W1) and B2 ∈ SU(W2) the map

F (B1, B2) : V → V, T 7→ B2 ◦ T ◦B1
∗

is an element of SU(V) , the map F : SU(W1) × SU(W2) → SU(V), (B1, B2) 7→ F (B1, B2)

is a homomorphism of Lie groups, and (f, F ) is a homomorphism of homogeneous spaces (see

Appendix A.1) from the (SU(W1) × SU(W2))-space IP(W1) × IP(W2) into the SU(V)-space

IP(V) .

Proof. Let B1 ∈ SU(W1) and B2 ∈ SU(W2) be given and fix a unitary basis (a1, . . . , an1) of

W1 which is adapted to the conjugation of this space. Then we have for every T, S ∈ V

〈F (B1, B2)T , F (B1, B2)S 〉 = 〈B2 ◦ T ◦ B1
∗
, B2 ◦ S ◦ B1

∗〉 =

n1∑

k=1

〈B2 T B1
∗
ak, B2 S B1

∗
ak〉

=

n1∑

k=1

〈T B1
∗
ak, S B1

∗
ak〉 = 〈T, S〉 ,

where the last equals sign is justified by the fact that (B1
∗
ak)k is another unitary basis of W1

(note that we have B1
∗ ∈ SU(W1) by (3.42)). This shows that F (B1, B2) ∈ U(V) holds.
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To show that F in fact maps into SU(V) , we consider the Lie group homomorphism

g := det ◦F : SU(W1) × SU(W2) → S1 .

Then we have to show g ≡ 1 . Because of the connectedness of SU(W1)×SU(W2) this is already

implied by

∀X1 ∈ su(W1), X2 ∈ su(W2) :
d

dt

∣∣∣∣
t=0

g(γX1(t), γX2(t)) = 0 , (3.43)

where γXk
: IR → SU(Wk) denotes the 1-parameter subgroup of SU(Wk) induced by Xk .

For the proof of Equation (3.43), we let Xk ∈ su(Wk) ( k ∈ {1, 2} ) be given; then

Xk ∈ End−(Wk) and tr(Xk) = 0 (3.44)

holds, and we have

d

dt

∣∣∣∣
t=0

g(γX1(t), γX2(t)) =
d

dt

∣∣∣∣
t=0

( t 7→ det(T 7→ γX2(t) ◦ T ◦ γX1(t)
∗
) )

= tr(T 7→ X2 ◦ T + T ◦X1
∗
)

= tr(T 7→ X2 ◦ T ) + tr(T 7→ T ◦X1
∗
) . (3.45)

To calculate these traces, we fix besides the basis (ak) also a unitary basis (b1, . . . , bn2) of W2

adapted to the conjugation of this space and consider for j ∈ {1, . . . , n1}, k ∈ {1, . . . , n2} the

linear maps

Tjk := b(aj , bk) : W1 → W2, w 7→ 〈w, aj〉 bk . (3.46)

Then (Tjk)j,k is a unitary basis of V , and therefore we have

tr(T 7→ X2 ◦ T ) =
∑

j,k

〈X2 ◦ Tjk, Tjk〉 =
∑

j,k

∑

`

〈X2 Tjk a`, Tjk a`〉
(3.46)
=

∑

j,k

〈X2 bk, bk〉

= n1 · tr(X2)
(3.44)
= 0 (3.47)

and

tr(T 7→ T ◦X1
∗
) =

∑

j,k

〈Tjk ◦X1
∗
, Tjk〉 =

∑

j,k

∑

`

〈TjkX1
∗
a`, Tjk a`〉

(3.46)
=

∑

j,k

〈 〈X1
∗
aj , aj〉bk , bk〉

=
∑

j,k

〈X1
∗
aj , aj〉 =

∑

j,k

〈aj , X1 aj〉 =
∑

j,k

〈aj , X1 aj〉 =
∑

j,k

〈X1 aj , aj〉

= n2 · tr(X1)
(3.44)
= 0 . (3.48)

By plugging Equations (3.47) and (3.48) into Equation (3.45), we obtain the desired result

(3.43).

It is now clear that F is a Lie group homomorphism. To prove that (f, F ) is a homomorphism

of homogeneous spaces, it suffices to show

∀ (B1, B2) ∈ SU(W1) × SU(W2), (w1, w2) ∈W1 ×W2 :

b(B1 w1, B2 w2) = F (B1, B2)( b(w1, w2) ) , (3.49)
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because the Hopf fibrations πk and π are SU(Wk)-equivariant resp. SU(V)-equivariant.

Let (B1, B2) ∈ SU(W1) × SU(W2) and (w1, w2) ∈ W1 ×W2 be given. Then we have for every

w ∈W1

b(B1 w1, B2 w2)w = 〈w,B1 w1〉B2 w2 = 〈w,B1w1〉B2 w2 = B2

(
〈B1

∗
w,w1〉w2

)

= (B2 ◦ b(w1, w2) ◦B1
∗
)w = F (B1, B2)( b(w1, w2) )w .

This proves Equation (3.49). �

We now specialize to the situation where W1 = W2 =: W is a unitary space of even complex

dimension 2m equipped with a conjugation W → W, w 7→ w ; we put WIR := V (�) = {w ∈
W |w = w } . As before we regard the space End(W ) = L(W,W ) =: V as a unitary space; it is

easily verified that the map V → V, T 7→ T (see Equation (3.40)) is anti-linear, involutive and

orthogonal with respect to Re(〈·, ·〉) , and hence a conjugation on V .

We will now construct a CQ-structure A on V (not induced by the conjugation T 7→ T )

so that the Segre embedding f : IP(W ) × IP(W ) → IP(V) (as described in Proposition 3.26)

maps into the complex quadric Q(A) . For this purpose, we fix an orthogonal complex structure

τ : WIR → WIR on the euclidean space WIR and denote the complexification of τ again by

τ : W →W . It should be noted that

τ2 = −idW and τ = τ (3.50)

holds.

3.28 Proposition. (a) The map

A : V → V, T 7→ τ ◦ T ◦ τ−1

is a conjugation on V with the “eigenspace” V (A) = {T ∈ V | τ ◦ T = T ◦ τ } , and we

have

∀T, S ∈ V (A) : T ◦ S ∈ V (A) . (3.51)

In the sequel, we regard V as a CQ-space via the CQ-structure A := S1 ·A .

(b) The Segre embedding f : IP(W ) × IP(W ) → IP(V) maps into the complex quadric Q(A) .

Proof. For (a). Using Equations (3.50), it is easily verified that A is anti-linear and involutive.

Moreover, if we denote by 〈·, ·〉IR := Re(〈·, ·〉) the real inner product on V induced by its complex

inner product, and fix a unitary basis (a1, . . . , a2m) of W , then we have for any T, S ∈ V

〈A(T ), A(S)〉IR =

2m∑

k=1

〈τ T τ−1 ak, τ S τ
−1 ak〉IR =

2m∑

k=1

〈T τ−1 ak, S τ
−1 ak〉IR

(∗)
= 〈T , S〉IR = 〈T, S〉IR ,

where the equals sign marked (∗) is justified by the fact that (τ−1(ak))k=1,...,2m is another unitary

basis of V . Thus we see that A is orthogonal with respect to 〈·, ·〉IR . By Proposition 2.3(h)

we conclude that A is a conjugation on V . (3.51) follows from the equation

∀T, S ∈ V : A(T ◦ S) = A(T ) ◦ A(S) ,

which is easily verified using Equations (3.41) and (3.50).
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For (b). It is sufficient to show that b(w1, w2) is A-isotropic for every w1, w2 ∈ W , where

b : W ×W → V is the bilinear map from Equation (3.30). For this, we fix an orthonormal basis

(a1, . . . , a2m) of WIR so that

∀k ∈ {1, . . . ,m} :
(
τ(ak) = am+k and therefore also τ(am+k) = −ak

)
(3.52)

holds. Then (a1, . . . , a2m) also is a unitary basis of W . If we now let w1, w2 ∈ W be given

and abbreviate T := b(w1, w2) , we have

A(T )ak = (τ ◦ T ◦ τ−1)ak = τ(T τ−1 ak) = τ(T τ−1 ak) (3.53)

(for the last equals sign, note that we have τ−1 ak ∈WIR because of (3.52)) and therefore

〈T,A(T )〉 =

2m∑

k=1

〈T ak, A(T ) ak〉
(3.53)
=

2m∑

k=1

〈T ak, τ(T τ−1 ak)〉

=
2m∑

k=1

〈
〈ak, w1〉w2 , τ( 〈τ−1 ak, w1〉w2 )

〉

=
2m∑

k=1

〈ak, w1〉 · 〈τ−1 ak, w1〉 · 〈w2, τ w2〉

= 〈w2, τ w2〉 ·
m∑

k=1

(
〈ak, w1〉 · 〈τ−1 ak, w1〉 + 〈am+k, w1〉 · 〈τ−1 am+k, w1〉

)

(3.52)
= 〈w2, τ w2〉 ·

m∑

k=1

(
− 〈ak, w1〉 · 〈am+k, w1〉 + 〈am+k, w1〉 · 〈ak, w1〉

)
= 0 ,

showing that b(w1, w2) is A-isotropic. �

3.29 Theorem. We now suppose that m = 1 holds. Then W is a 2-dimensional unitary space,

IP(W ) is a 1-dimensional complex projective space, and Q(A) is a 2-dimensional complex

quadric. We consider the Segre embedding f : IP(W ) × IP(W ) → IP(V) (see Proposition 3.26)

and the Lie group homomorphism F : SU(W ) × SU(W ) → SU(V) from Proposition 3.27. In

this situation, we have:

(a) f : IP(W ) × IP(W ) → Q(A) is a holomorphic isometry.

(b) We have F (SU(W ) × SU(W )) = Auts(A)0 and F : SU(W ) × SU(W ) → Auts(A)0 is a

two-fold covering map of Lie groups with kernel {±(idW , idW )} . Herein we recognize the

well-known isomorphy of Lie groups

Spin(4) ∼= SU(2)×SU(2) .

(c) (f, F ) is an almost-isomorphism of Hermitian symmetric spaces from the (SU(W ) ×
SU(W ))-space IP(W ) × IP(W ) onto the Auts(A)0-space Q(A) .
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Thus, we have shown the following isomorphy in the category of Hermitian symmetric spaces:

Q2 ∼= IP1 × IP1 .

Proof. For (a). By Proposition 3.26 and Proposition 3.28(b), f : IP(W ) × IP(W ) → Q(A)

is a holomorphic isometric embedding. From the facts that dimC(IP(W ) × IP(W )) = 2 =

dimCQ(A) holds, IP(W ) × IP(W ) is compact and Q(A) is connected, it follows that we have

f(IP(W ) × IP(W )) = Q(A) , and thus f : IP(W ) × IP(W ) → Q(A) is in fact a holomorphic

isometry.

For (b). We first show that ker(F ) = {±(idW , idW )} holds. The inclusion “⊃” is obvious. For

the converse inclusion, let B1, B2 ∈ SU(W ) be given with F (B1, B2) = idV . We thus have

∀T ∈ V : B2 ◦ T ◦ B1
∗

= T .

We have B1 ∈ SU(W ) by (3.42), and therefore the preceding equation implies

∀T ∈ V : B2 ◦ T = T ◦B1 . (3.54)

By specializing T = idW ∈ V in this equation, we obtain B2 = B1 =: B ∈ SU(W ) . Now

Equation (3.54) shows that B lies in the center of V = End(W ) , whence it follows that

B = λ · idW holds for some λ ∈ C . Because of B ∈ SU(W ) we have (remember, dimW = 2 )

1 = det(B) = det(λ idW ) = λ2

and thus λ ∈ {±1} . Thus we have shown (B1, B2) ∈ {±(idW , idW )} . It follows that F is a

two-fold covering map of Lie groups onto its image.

Below, we will show

SU(W ) ⊂ V (A) . (3.55)

Combining Equation (3.51) with (3.55) and (3.42), we then find

∀ (B1, B2) ∈ SU(W ) × SU(W ) : F (B1, B2)(V (A)) ⊂ V (A) ;

because we have F (SU(W ) × SU(W )) ⊂ SU(V) by Proposition 3.27, we therefrom conclude

(see also Proposition 2.17(a))

F (SU(W ) × SU(W )) ⊂ Auts(A)0 .

Because F is a covering map of Lie groups over its image and we have dim(SU(W )×SU(W )) =

6 = dim(Auts(A)0) , we in fact have

F (SU(W ) × SU(W )) = Auts(A)0 .

It only remains to show (3.55). For this, we let B ∈ SU(W ) be given. We fix a1 ∈ S(WIR)

and put a2 := τ(a1) . Then (a1, a2) is an orthogonal basis of WIR and a unitary basis of W ,
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and there exist α, β ∈ C with |α|2 + |β|2 = 1 , so that B is with respect to this unitary basis

represented by the matrix

MB :=
(
α −β
β α

)
.

The endomorphisms B and τ are represented with respect to the same basis by the matrices

MB :=
(
α −β
β α

)
resp. Mτ :=

(
0 −1
1 0

)
.

Now, one easily calculates

Mτ ·MB =
(

−β −α
α −β

)
= MB ·Mτ ,

whence τ ◦B = B ◦ τ , hence A(B) = τ ◦ B ◦ τ−1 = B and therefore B ∈ V (A) follows.

For (c). It follows from (a), (b) and Proposition 3.27 that (f, F ) is an almost-isomorphism of

homogeneous spaces. By Proposition A.5, (f, F ) is an almost-isomorphism of affine symmetric

spaces; in fact it is an almost-isomorphism of Hermitian symmetric spaces because f is a

holomorphic isometry by (a). �



Chapter 4

The classification of curvature-invariant subspaces

One of the central results of this dissertation is the classification of the totally geodesic submani-

folds of the complex quadric Q . By a well-known theorem, the connected, complete, totally

geodesic submanifolds of the Riemannian symmetric space Q passing through a point p ∈ Q are

in one-to-one correspondence with the curvature-invariant subspaces of TpQ (see for example

[KN69], Theorem XI.4.3, p. 237). Therefore, the task of classifying the (connected, complete)

totally geodesic submanifolds of Q splits into the following two problems:

(a) Classify the curvature-invariant subspaces of TpQ , or equivalently, of a CQ-space (V,A) .

(b) For each of the curvature-invariant subspaces U of TpQ found in the solution of problem

(a), construct a totally geodesic, connected, complete submanifold MU of Q with p ∈MU

and TpMU = U .

In the present chapter, we will solve problem (a). In Section 4.1 we state the classification result

(Theorem 4.2) and prove some facts about the various types of curvature-invariant subspaces.

For the proof of the classification we proceed as follows: We suppose Q = Q(AQ) , then Q is a

Hermitian symmetric (G := Auts(AQ)0)-space as we saw in Section 3.2; moreover with respect to

a fixed p0 ∈ Q we have the canonical decomposition g = k⊕m and the canonical isomorphism

τ : m → Tp0Q . A subspace U ⊂ Tp0Q is curvature-invariant if and only if τ−1(U) ⊂ m

is a Lie triple system in m (see Equation (3.11)). Therefore it is sufficient to classify the

Lie triple systems m′ ⊂ m . In doing so, we will use the canonical CQ-space structure on m

described in Section 3.2. But it will also be of importance that m carries further structure

beyond the CQ-space structure because of its embedding into the Lie algebra g . In particular,

because of this further structure we are able to apply the theory of roots and root spaces (see

Appendix A.4) in this situation; this theory is the central tool in showing that the classification

given in Theorem 4.2 is complete.

In Section 4.2 we prepare the completeness proof by studying a more general situation: We let

M be a general Riemannian symmetric G-space of compact type with canonical decomposition

g = k ⊕ m , we also suppose that a Lie triple system m′ ⊂ m is given. Then we develop a root

95
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theory for m′ ; in particular we describe relations between the roots and root spaces of m ′ and

the roots resp. root spaces of the ambient symmetric space M .

In Sections 4.3 and 4.4 we return to the specific situation of a complex quadric Q to attain the

classification of Lie triple systems m′ ⊂ m . For this purpose we combine the relations between

the roots and root spaces of m′ and Q derived in Section 4.2 with the explicit description of

the roots and root spaces of Q via the CQ-structure of m given in Theorem 3.15.

It should be mentioned that it is also possible to prove the classification of curvature-invariant

subspaces in a CQ-space V without use of the root theory by directly investigating the eigen-

values and eigenspaces of the Jacobi operator corresponding to the curvature tensor of V (see

Theorem 2.49). However, the use of the root theory permits to give a more systematic proof;

moreover it seems probable that the results of Section 4.2 would be of use also for the classifi-

cation of totally geodesic submanifolds in other symmetric spaces than complex quadrics.

4.1 The classification theorem

4.1 Definition. Let (V,A) be a CQ-space with curvature tensor R .

(a) A (real) linear subspace U ⊂ V is called curvature-invariant, if

∀u, v, w ∈ U : R(u, v)w ∈ U

holds.

(b) A curvature-invariant subspace U 6= V of V is called maximal, if there exists no

curvature-invariant subspace U ′ of V with U ( U ′ ( V .

(c) Let U ⊂ V be a curvature-invariant subspace. We call the maximal dimension of an R-

flat subspace of V which is contained in U the rank of U and denote this number by

rk(U) .6

The aim of the present chapter is to prove the following theorem:

4.2 Theorem. Let (V,A) be an m-dimensional CQ-space with m ≥ 2 . Then, a real linear subspace

{0} 6= U ( V is curvature-invariant if and only if it is of one of the types described in the

following list:

(Geo, t) U = IRv holds for some v ∈ S(V) with ϕ(v) = t ; here we have t ∈ [0, π4 ] .

(G1, k) U is a k-dimensional CQ-subspace of V (see Proposition 2.13); here we have 2 ≤ k ≤
m− 1 .

6See Definition 2.52. Because of Theorem 2.54, we necessarily have rk(U) ∈ {1, 2} .
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(G2, k1, k2) There exist A ∈ A and linear subspaces W1,W2 ⊂ V (A) of real dimension k1 resp. k2

so that W1 ⊥W2 and U = W1 	 JW2 holds; here we have k1, k2 ≥ 1 and k1 + k2 ≤ m .

(G3) There exists A ∈ A and an orthonormal system (x, y) in V (A) so that U = C(x−Jy)	
IR(x+ Jy) holds.

(P1, k) There exists A ∈ A so that U is a k-dimensional IR-linear subspace of V (A) ; here we

have 1 ≤ k ≤ m .

(P2) There exists A ∈ A and x ∈ S(V (A)) so that U = Cx holds.

(A) There exists A ∈ A and an orthonormal system (x, y, z) in V (A) so that

U = IR(2x+ Jy) 	 IR(y + Jx+
√

3Jz)

holds; this type exists only for m ≥ 3 .

(I1, k) U is a complex k-dimensional isotropic subspace of V (see Propositions 2.20(e),(f) and

Proposition 2.21); here we have 1 ≤ k ≤ m
2 .

(I2, k) U is a totally real, real-k-dimensional isotropic subspace of V ; here we have 1 ≤ k ≤ m
2 .

By the type of a curvature-invariant subspace, we mean the full specification (Geo, t) , (G1, k)

etc., including the numbers t , k etc. where relevant. We identify the types (G2, k1, k2) with

(G2, k2, k1) , the type (P1, 1) with (Geo, 0) , and the type (I2, 1) with (Geo, π4 ) . Then no

curvature-invariant subspace is of more than one type.

If U and U ′ are curvature-invariant subspace of V , U can be transformed into U ′ by an

element of Aut(A) if and only if U and U ′ are of the same type.

Moreover, the various types of curvature-invariant spaces have the following properties:

type of U dimIR U
U complex or

totally real?
rk(U) ϕ(S(U)) U maximal?

(Geo, t) 1 totally real 1 {t} no

(G1, k) 2k complex 2 [0, π4 ] for k = m− 1 ≥ 2

(G2, k1, k2) k1 + k2 totally real 2 [0, π4 ] for k1 + k2 = m ≥ 3

(G3) 3 neither 2 [0, π4 ] only for m = 2

(P1, k) k totally real 1 {0} for k = m

(P2) 2 complex 1 {0} only for m = 2

(A) 2 neither 1 {arctan( 1
2 )} only for m = 3

(I1, k) 2k complex 1 {π4 } for 2k = m ≥ 4

(I2, k) k totally real 1 {π4 } no

4.3 Remarks. (a) If V is a 1-dimensional CQ-space, then every IR-linear subspace of V is

curvature-invariant.

(b) The letters “G”, “P”, “A” and “I” in the type specifications for curvature-invariant sub-

spaces stand for the words “generic”, “principal”, “arctan( 1
2 )” and “isotropic”, respec-

tively. Indeed, as the table in Theorem 4.2 shows, the curvature-invariant subspaces of
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type (P1, k) and of type (P2) consist of principal vectors only (see Definition 2.7(a)),

the spaces of type (A) consist of vectors with A-angle arctan( 1
2) only, and the spaces of

type (I1, k) and (I2, k) are isotropic (see Definition 2.19). The spaces of type (G1, k) ,

(G2, k1, k2) and (G3) are “generic” in the sense that they contain vectors of every A-angle

t ∈ [0, π4 ] . In the type specification (Geo, t) , the abbreviation “Geo” obviously stands for

“geodesic”, as the totally geodesic submanifolds of Q corresponding to curvature-invariant

subspaces of this type are the traces of geodesics in Q .

(c) The 2-flats of V are exactly the curvature-invariant subspaces of type (G2, 1, 1) (compare

Theorem 2.54).

(d) The curvature-invariant subspaces of type (P2) are exactly the 1-dimensional CQ-

subspaces of V . These spaces consist of principal vectors only (unlike the spaces of type

(G1, k) with k ≥ 2 ), and therefore we do not call this type (G1, 1) in order to remain

consistent with the meaning of the letters P and G described in Remark (b).

Proof of Theorem 4.2. First we verify that the spaces of the types given in the theorem are

in fact curvature-invariant: For (Geo, t) this is obvious, for (G1, k) , (G2, k1, k2) and (P2)

it follows easily by inspection of the representation of the curvature tensor of (V,A) given in

Proposition 2.43(b) (note that spaces of these types are invariant with respect to at least one

A ∈ A ), for (G3) it is checked by an straightforward explicit calculation, for (P1, k) it follows

from Proposition 2.43(c), and for (I1, k) and (I2, k) it follows from Proposition 2.43(d). For

(A) : Let U be of type (A) ; then there exists A ∈ A and an orthonormal system (x, y, z) in

V (A) so that with a := 1√
5
(2x + Jy) and b := 1√

5
(y + Jx +

√
3Jz) , (a, b) is an orthonormal

basis of U . Via Proposition 2.43(b), one now calculates

R(a, b)a = − 2
5 b and R(a, b)b = 2

5 a . (4.1)

It follows that U is curvature-invariant.

It is easily seen that the information in the table on the dimension of the curvature-invariant

spaces and on them being complex or totally real subspaces is correct.

For the data on the rank of U : In any case, we have rk(U) ∈ {1, 2} because of Theorem 2.54. If

U is of any of the types (G1, k) , (G2, k1, k2) or (G3) , it is easily seen that U contains a 2-flat

of V (again, see Theorem 2.54), and therefore the rank of U then has to be 2 . It is clear that

the spaces of type (Geo, t) are of rank 1 . Proposition 2.43(c) shows that if U of type (P1, k) ,

the restriction of R to U is the curvature tensor of a sphere of radius 1/
√

2 , and therefore

U is then of rank 1 . If U is of type (P2) , then one easily calculates that the restriction of

R to U is the curvature tensor of a 2-sphere of radius 1/
√

2 , and if U is of type (A) , then

Equations (4.1) show that the restriction of R to U is the curvature tensor of a 2-sphere of

radius
√

10/2 . Therefore, also in these cases, U is of rank 1 . Finally, if U is of type (I1, k) or

(I2, k) , then Proposition 2.43(d) shows that the restriction of R to U is the curvature tensor

of a complex projective space of constant holomorphic sectional curvature 4 resp. a sphere of

radius 1 , and thus also in these cases U is of rank 1 .
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For the data on ϕ(S(U)) : If U is of type (Geo, t) , it is clear that ϕ(S(U)) = {t} holds. If U

is of any of the types (G1, k) , (G2, k1, k2) or (G3) , U contains a 2-flat a = IRx⊕ IRJy , where

(x, y) is a suitable orthonormal system in V (A) . Thus, we have vt := cos(t)x + sin(t)Jy ∈ U

for every t ∈ [0, π4 ] ; because of ϕ(vt) = t , ϕ(S(U)) = [0, π4 ] follows. It is clear that the spaces

of type (P1, k) and (P2) contain principal vectors only and therefore satisfy ϕ(S(U)) = {0} ,

an explicit calculation via Theorem 2.28(a) shows that spaces of type (A) contain only vectors

of A-angle arctan( 1
2) , and because the spaces of type (I1, k) and (I2, k) are isotropic, they

satisfy ϕ(S(U)) = {π4 } by Proposition 2.29(b).

To prove the statements on the maximality of curvature-invariant subspaces, we presume that

the list of curvature-invariant subspaces given in the theorem is complete; this fact will be proved

in the remainder of the chapter. We now consider the various types individually:

(Geo, t) If U is of type (Geo, t) , then U is contained in a 2-flat, i.e. in a space of type (G2, 1, 1)

(see Corollary 2.55) and therefore cannot be maximal.

(G1, k) This type exists only for m ≥ 3 . If U is of type (G1, k) with k ≤ m − 2 , then U is

contained in a space of type (G1,m− 1) and therefore cannot be maximal. On the other

hand, the spaces of type (G1,m − 1) are of real codimension 2 in V . There exist no

curvature-invariant subspaces of V of real codimension 1 because of m ≥ 3 , and therefore

the spaces of type (G1,m− 1) are then maximal.

(G2, k1, k2) If U is of type (G2, k1, k2) with k1 + k2 < m , then U is contained in a space of type

(G2, k1,m− k1) and is therefore not maximal. Moreover, any space U of type (G2, 1, 1)

is contained in a space of type (G3) and is therefore not maximal in the case m = 2 . On

the other hand, if U is of type (G2, k1, k2) with k1 + k2 = m ≥ 3 , then U is maximal:

Assume to the contrary that there exists a curvature-invariant subspace U ′ of V with

U ( U ′ ( V . Then we have dimIR U
′ > dimIR U = m , and therefore U ′ is of type

(G1, k) for some k (see the table in the theorem) and hence complex. Thus we have

U ′ ⊃ U 	 JU = V , which is a contradiction.

(G3) For m = 2 , the spaces of type (G3) have real codimension 1 in V and are therefore

maximal. On the other hand, for m ≥ 3 , the space U of type (G3) described in the

theorem is contained in the space C(x− Jy)⊕C(x+ Jy) = Cx⊕Cy of type (G1, 2) , and

therefore cannot be maximal.

(P1, k) If U is of type (P1, k) with k < m , then U is contained in a space of type (P1,m) and

therefore cannot be maximal. On the other hand, if U is of type (P1,m) , then we have

U = V (A) for some A ∈ A . An inspection of the table in the theorem shows that there

exists no curvature-invariant subspace U ′ of V with V (A) ( U ′ ( V .

(P2) Let U be a curvature-invariant subspace of type (P2) . In the case m = 2 , U is maximal:

Assume to the contrary that there exists a curvature-invariant subspace U ′ of V with U (
U ′ ( V . Then U ′ is of real dimension 3 and therefore of type (G3) , so that there exists

an orthonormal system (x, y) in some V (A) , A ∈ A with U ′ = C(x− Jy)	 IR(x+ Jy) .

U is complex, and therefore we have U = U ∩ JU ⊂ U ′ ∩ JU ′ = C(x − Jy) , which is a
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contradiction because all elements of U are principal, whereas C(x− Jy) is an isotropic

subspace of V .

On the other hand, in the case m ≥ 3 , U is contained in a space of type (G1, 2) and

therefore cannot be maximal.

(A) Let U be a curvature-invariant subspace of type (A) ; then we necessarily have m ≥ 3 .

Using the notation in the definition of this type in the theorem, we see that the CQ-span

(see Definition 2.10(e)) of U is given by Û := Cx ⊕ Cy ⊕ Cz ; this space is of complex

dimension 3 . Thus, in the case m ≥ 4 , U is contained in the space Û of type (G1, 3)

and therefore cannot be maximal.

In the case m = 3 , we again show the maximality of U by contradiction: Assume

that U ′ is a curvature-invariant subspace of V with U ( U ′ ( V . Then we have

arctan( 1
2 ) ∈ ϕ(S(U ′)) and therefore U ′ is of one of the types (G1, k) , (G2, k1, k2) and

(G3) . If U ′ is of type (G1, k) , then U ′ is a CQ-subspace of V and therefore contains

Û ; because we have dimC Û = 3 = dimC V , U ′ = V follows, a contradiction. If U ′

is of type (G2, k1, k2) , then U ′ is totally real in V , and hence U is totally real, also

a contradiction. Finally, if U ′ is of type (G3) , then the CQ-span of U ′ is complex-2-

dimensional, in contradiction to dimC Û = 3 .

(I1, k) Let U be a curvature-invariant subspace of type (I1, k) . Proposition 2.20(e),(f) shows

that the CQ-span Û of U is of complex dimension 2k . In the case 2k < m Û is therefore

a curvature-invariant subspace of V of type (G1, 2k) ; because we have Û ) U it follows

that U is not maximal. In the case 2k = m = 2 , U is contained in a space of type

(G3) and therefore not maximal either. In the case 2k = m ≥ 4 , we once again prove the

maximality of U by contradiction: Assume that U ′ is a curvature-invariant subspace of

V with U ( U ′ ( V . Then we have dimIR U
′ > dimIR U = 2k = m , and therefore U ′ is

of type (G1, k′) for some k′ , and hence a CQ-space. Thus we have Û ⊂ U ′ ; because of

dimC(Û) = 2k = m , we have Û = V and therefore U ′ = V follows, a contradiction.

(I2, k) If U is of type (I2, k) , then U is contained in the space U 	 JU of type (I1, k) and

therefore cannot be maximal.

To prove that no curvature-invariant subspace of V is of more than one type (observing the

identifications of types given in the theorem) and the statement on the action of Aut(A) on the

set of curvature-invariant subspaces of V , we give for each type of curvature-invariant subspaces

a set of properties which characterizes the curvature-invariant subspaces of that type among all

curvature-invariant subspaces of V :

type characterizing properties of the spaces U of that type

(Geo, t) ϕ(S(U)) = {t} , dimIR U = 1

(G1, k) U is a CQ-subspace, dimC U = k

(G2, k1, k2)
There exist A ∈ A and linear subspaces W1,W2 ⊂ V (A) of real dimension k1

resp. k2 so that W1 ⊥W2 and U = W1 	 JW2 holds.

(G3) U is neither complex nor totally real, dimIR U = 3
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type characterizing properties of the spaces U of that type

(P1, k) U is totally real, ϕ(S(U)) = {0} , dimIR U = k

(P2) U is complex, ϕ(S(U)) = {0}
(A) U is neither complex nor totally real, dimIR U = 2

(I1, k′) U is a complex, isotropic subspace, dimC U = k′

(I2, k′) U is a totally real, isotropic subspace, dimIR U = k′

From this table, we draw the following conclusions:

(a) The properties given for different types (again, note the identifications given in the the-

orem) are mutually exclusive, therefore no curvature-invariant subspace can be of more

than one type.

(b) The properties in the table are all invariant under replacement of U by B(U) (where

B ∈ Aut(A) ), therefore for any curvature-invariant subspace U , U and B(U) are of the

same type.

Next, we prove that two curvature-invariant subspaces U and U ′ can be transformed into each

other by an element of Aut(A) if and only if they are of the same type. One implication has

already been shown as (b) above. For the other implication, we let curvature-invariant subspaces

U , U ′ of V of the same type be given. If they are of type (Geo, t) , then Proposition 2.36(a)

shows that there exists B ∈ Aut(A) with U ′ = B(U) . If they are of another type, then it is

easy to construct a CQ-automorphism B ∈ Aut(A) which transports the data described in the

definition of the respective type for U into the data for U ′ and therefore U into U ′ . As an

example, we describe the construction of B more explicitly for the type (I1, k) :

Suppose that U,U ′ are of type (I1, k) , therefore U,U ′ are complex k-dimensional A-isotropic

subspaces of V . We fix A ∈ A . By Proposition 2.20(e),(f) there exist 2k-dimensional linear

subspaces Y, Y ′ ⊂ V (A) and orthogonal complex structures τ : Y → Y and τ ′ : Y ′ → Y ′ so

that

U = {x+ Jτx |x ∈ Y } and U ′ = {x+ Jτ ′x |x ∈ Y ′ }

holds. Let L0 : (Y, τ) → (Y ′, τ ′) be a C-linear isometry between the complex-k-dimensional

unitary spaces (Y, τ) and (Y ′, τ ′) ; that means L0 : Y → Y ′ is an IR-linear isometry and

τ ′ ◦L0 = L0 ◦ τ holds. L0 can be extended to an orthogonal transformation L : V (A) → V (A) ,

and its complexification B := LC is a (strict) CQ-automorphism by Proposition 2.15. It is now

easily seen that B(U) = U ′ holds.

It remains to prove that every curvature-invariant subspace of V is of one of the types given in

the theorem, and this is the objective of the remainder of the present chapter.
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4.2 The root space decomposition of a Lie triple system

As was explained in the introduction of the present chapter, the (connected, complete) totally

geodesic submanifolds of a complex quadric Q passing through the “origin point” p0 ∈ Q

are in one-to-one correspondence with the Lie triple systems m′ contained in the space m of

the canonical decomposition g = k ⊕ m corresponding to the symmetric space Q as described

in Propositions 3.9(d) and 3.12. The classification of these Lie triple systems m ′ given in

Sections 4.3 and 4.4 makes fundamental use of a root space decomposition for m ′ analogous to

the one described for m in Appendix A.4.

In the present section, we describe such a root space decomposition for Lie triple systems in

a general setting: We let (M,ϕ, p0, σ) be a symmetric G-space of compact type and consider

the linearization σL of the involutive Lie group automorphism σ : G → G and the canonical

decomposition g = k ⊕ m of the Lie algebra g of G it induces. The Killing form κ of g is

negative definite; as in Section A.4 we regard g as an euclidean space via the inner product

〈·, ·〉 := −c · κ with some c ∈ IR+ .

4.4 Definition. A linear subspace m′ ⊂ m is called a Lie triple system if [ [m′,m′] , m′ ] ⊂ m′ holds.

Let m′ ⊂ m be a Lie triple system; we wish to derive a root space decomposition for m′ .

As is well-known, there exists a Riemannian symmetric subspace M ′ of M with p0 ∈ M ′

and τ−1(Tp0M
′) = m′ ([KN69], Theorem XI.4.3, p. 237; τ : m → Tp0M is the canonical

isomorphism). However, we cannot apply the root theory of Appendix A.4 to M ′ directly, as

M ′ need not be of compact type. Rather, we derive a root space decomposition of m ′ from the

root space decomposition of m described in Appendix A.4.

For any given Cartan subalgebra a of m , we consider the corresponding root system of m ,

which we now denote by ∆(m, a) ⊂ a∗ ; also we put for any λ ∈ a∗

mλ := {X ∈ m | ∀Z ∈ a : ad(Z)2X = −λ(Z)2X } .

Then we have the root space decomposition of m as in Proposition A.10(c).

4.5 Definition. Let m′ ⊂ m be a Lie triple system.

(a) We call the maximal dimension of a flat subspace (see Proposition A.6) of m lying in m ′

the rank of m′ , denoted by rk(m′) . Obviously rk(m′) ≤ rk(M) holds.

(b) We call any flat subspace a′ of m′ with dim(a′) = rk(m′) a Cartan subalgebra of m′ .

(c) Suppose that a is a Cartan subalgebra of m so that a′ := a ∩ m′ is a Cartan subalgebra

of m′ .7

7Such an a does not necessarily exist for every configuration of (m,m′) . However, its existence is guaranteed

for rk(m′) = rk(m) (then a can be chosen as a Cartan subalgebra of m′ ), and for rk(m′) = 1 (by [Hel78],

Theorem V.6.2(ii), p. 246).
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In this situation we define for any α ∈ (a′)∗

m′
α := {X ∈ m′ | ∀Z ∈ a′ : ad(Z)2X = −α(Z)2X } (4.2)

and

∆(m′, a′) := {α ∈ (a′)∗ \ {0} |m′
α 6= {0} } . (4.3)

We call ∆(m′, a′) the root system of m′ with respect to a′ , and the space m′
α the root

space of m′ corresponding to the root α ∈ ∆(m′, a′) . Like in Proposition A.10(b) we call

a subset ∆′
+ ⊂ ∆(m′, a′) a system of positive roots if

∆′
+ ∪ (−∆′

+) = ∆(m′, a′) and ∆′
+ ∩ (−∆′

+) = ∅

holds.

For α ∈ ∆(m′, a′) we denote by R′
α : a′ → a′ the orthogonal reflection in the hyper-

plane α−1({0}) . Then we call the group of orthogonal transformations of a′ generated

by {R′
α |α ∈ ∆(m′, a′) } the Weyl group W (m′, a′) of m′ (with respect to a′ ). W (m′, a′)

also acts on (a′)∗ via the action (g, α) 7→ α ◦ g−1 .

4.6 Proposition. Let m′ ⊂ m be a Lie triple system and suppose that a is a Cartan subalgebra of

m so that a′ := a ∩ m′ is a Cartan subalgebra of m′ .

(a) We have for any system of positive roots ∆′
+ ⊂ ∆(m′, a′)

m′ = a′ ⊕ ©
α∈∆′

+

m′
α ; (4.4)

moreover:

m′
0 = a′ , (4.5)

∆(m′, a′) ⊂ { λ|a′ | λ ∈ ∆(m, a), λ|a′ 6= 0 } , (4.6)

∀α ∈ ∆(m′, a′) : m′
α =

(
©λ∈∆(m,a)

λ|a′=α
mλ

)
∩ m′ . (4.7)

(b) We have rk(m′) = rk(m) if and only if a′ = a holds. If this is the case, then we have

∆(m′, a′) ⊂ ∆(m, a) , ∀α ∈ ∆(m′, a′) : m′
α = mα ∩ m′ and W (m′, a′) ⊂W (m, a) .

(4.8)

Moreover, the Weyl group W (m′, a′) then leaves ∆(m′, a′) invariant.8

Proof. Let us abbreviate ∆ := ∆(m, a) and ∆′ := ∆(m′, a′) .

Because M is a Riemannian symmetric G-space of compact type, the Killing form κ : g×g → IR

is negative definite, and therefore 〈·, ·〉 := −κ is a positive definite inner product on g . We

regard g and especially the subspace m as euclidean spaces in this way.

8If the symmetric subspace M ′ of M which corresponds to m′ is of compact type, then W (m′, a′) leaves

∆(m′, a′) invariant by Proposition A.15(b) without regard to rk(m′) .
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For (a). We first prove Equation (4.5). We have [a′, a′] = {0} by Proposition A.6(b) and

therefore a′ ⊂ m′
0 . Conversely, let X ∈ m′

0 be given. Then we have for every Z ∈ a′ :
ad(Z)2X = 0 and therefore

0 = 〈ad(Z)2X,X〉 = −〈ad(Z)X, ad(Z)X〉 ,

whence ad(Z)X = 0 follows by the positive definity of 〈·, ·〉 . From this fact and [a ′, a′] = {0} ,

we see that [a′ + IRX, a′ + IRX] = {0} holds, and therefore a′ + IRX is flat by a further

application of Proposition A.6. Because of the maximality of a′ , we conclude X ∈ a′ .

We now consider the endomorphisms RZ : m → m, X 7→ − ad(Z)2X with Z ∈ a . (RZ is

equivalent to a Jacobi operator, see Equation (A.13)). As was shown in Proposition A.11, there

exists a finite set Σ of functions a → IR so that

m = ©
µ∈Σ

Eµ and ∀µ ∈ Σ : Eµ 6= {0} (4.9)

holds, where we define for every function µ : a → IR :9

Eµ :=
⋂

Z∈a

Eig(RZ , µ(Z)) . (4.10)

We have

Σ = {µ : a → IR | Eµ 6= {0} } . (4.11)

For every Z ∈ a′ the endomorphism RZ leaves m′ invariant because m′ is a Lie triple system.

The endomorphisms RZ |m′ : m′ → m′ (with Z ∈ a′ ) are self-adjoint with respect to the inner

product 〈·, ·〉 , and any two such endomorphisms commute with each other. Therefore the family

of endomorphisms (RZ |m′)Z∈a′ is jointly orthogonally diagonalizable; via this fact we obtain a

decomposition for m′ analogous to the decomposition of m from Equation (4.9): There exists

a finite set Σ′ of functions a′ → IR so that

m′ = ©
ν∈Σ′

F ′
ν and ∀ν ∈ Σ′ : F ′

ν 6= {0} (4.12)

holds, where we define for every function ν : a′ → IR

F ′
ν :=

⋂

Z∈a′
Eig(RZ |m′, ν(Z)) . (4.13)

We have

Σ′ = { ν : a′ → IR | F ′
ν 6= {0} } . (4.14)

To study the relationship between Σ′ and Σ resp. between F ′
ν and Eµ , we put for every

function ν : a′ → IR

Σ(ν) := { µ ∈ Σ | µ|a′ = ν } and Fν :=
⋂

Z∈a′
Eig(RZ , ν(Z)) . (4.15)

9For Equation (4.10) remember that we use the notation Eig(B, λ) := ker(B − λ id) even when λ is not an

eigenvalue of B , compare Section 0.2.
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Then we have by Equations (4.13) and (4.15)

F ′
ν = Fν ∩ m′ . (4.16)

We now prove the following equation, which is of central importance in the present consideration:

Fν = ©
µ∈Σ(ν)

Eµ . (4.17)

Indeed, in this equation the inclusion “⊃” follows immediately from Equations (4.10) and (4.15).

For the converse inclusion, we let X ∈ Fν be given. In particular X ∈ m holds; by Equa-

tion (4.9) it follows that we have X =
∑

µ∈ΣXµ with suitable Xµ ∈ Eµ . For every Z ∈ a′ we

now have

∑

µ∈Σ

ν(Z)Xµ = ν(Z)X
(4.15)
= RZ(X) =

∑

µ∈Σ

RZ(Xµ)
(4.10)
=

∑

µ∈Σ

µ(Z)Xµ .

This calculation shows that for any µ ∈ Σ with Xµ 6= 0 , we have ν(Z) = µ(Z) for every

Z ∈ a′ , and therefore µ ∈ Σ(ν) . Thus we see that X =
∑

µ∈Σ(ν) Xµ is a member of the

right-hand side of Equation (4.17).

By combining Equation (4.17) with Equation (4.16) we obtain

∀ν ∈ Σ′ : F ′
ν =

(
©

µ∈Σ(ν)

Eµ

)
∩ m′ (4.18)

and therefore also

∀ν ∈ Σ′ : Σ(ν) 6= ∅ . (4.19)

To obtain the desired results we now describe relations between the objects involved in the

diagonalizations we studied and the roots and root spaces of m resp. m′ :

∀λ ∈ a∗ : mλ = Eλ2 and ∀α ∈ (a′)∗ : m′
α = F ′

α2 ; (4.20)

Σ = {λ2 |λ ∈ ∆ }∪̇{0} and Σ′ = {α2 |α ∈ ∆′ }∪̇{0} . (4.21)

The first equation in (4.20) resp. (4.21) is just Equation (A.30) resp. Equation (A.28) from

Proposition A.11(a). The second equation in (4.20) follows from the fact that we have for any

α ∈ (a′)∗

m′
α

(4.2)
=

⋂

Z∈a′
Eig(RZ |m′, α(Z)2)

and Equation (4.13).

For the proof of the second equation in (4.21): Let ν ∈ Σ′ with ν 6= 0 be given. By (4.19) there

exists some µ ∈ Σ so that µ|a′ = ν holds. By the first equation in (4.21) there exists λ ∈ ∆

with µ = λ2 . We have α := λ|a′ ∈ (a′)∗ \ {0} and ν = α2 , hence m′
α

(4.20)
= F ′

α2 = F ′
ν 6= {0} .

Therefrom α ∈ ∆′ follows by Equation (4.3), and therefore ν is a member of the right-hand

side of the equation to be shown. For the converse inclusion: We have F ′
0

(4.20)
= m′

0

(4.5)
= a 6= {0}
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and therefore 0 ∈ Σ′ by (4.14); also we have for any α ∈ ∆′ : F ′
α2

(4.20)
= m′

α 6= {0} and therefore

α2 ∈ Σ′ again by (4.14).

We now show Equations (4.6) and (4.7). Let α ∈ ∆′ be given. Then we have

m′
α

(4.20)
= F ′

α2

(4.18)
=

(
©

µ∈Σ(α2)

Eµ

)
∩ m′ (4.21)

=


 ©

λ∈∆+

λ2∈Σ(α2)

Eλ2


 ∩ m′ (4.20)

=


 ©

λ∈∆
λ|a′=α

mλ


 ∩ m′

(where ∆+ ⊂ ∆ is a positive root system); for the last equals sign notice that (λ|a′)2 = α2

implies λ|a′ = ±α . This shows Equation (4.7). Because of m′
α 6= {0} it follows in particular

that there exists λ ∈ ∆ with λ|a′ = α 6= 0 , whence (4.6) follows.

Finally, Equation (4.4) is derived in the following way:

m′ (4.12)
= ©

ν∈Σ′
F ′
ν

(4.21)
= F ′

0 ⊕ ©
α∈∆′

+

F ′
α2

(4.20)
= m′

0 ⊕ ©
α∈∆′

+

m′
α

(4.5)
= a′ ⊕ ©

α∈∆′
+

m′
α .

For (b). Because a′ and a are Cartan subalgebras of a′ and a respectively, we have rk(m′) =

dim a′ and rk(m) = dim a . From these facts and a′ ⊂ a it follows that rk(m′) = rk(m) is

equivalent to a′ = a .

We now suppose that a′ = a holds. Then the first two parts of (4.8) follow from Equations (4.6)

and (4.7); from a′ = a and ∆′ ⊂ ∆ it also follows that the Weyl group W (m′, a′) is a subgroup

of W (m, a) .

It remains to show that W (m′, a′) leaves ∆′ invariant.

For this, we let λ ∈ ∆′ be given and fix X ∈ S(m′
λ) . By (4.8), we have X ∈ mλ , and we

let X̂ ∈ kλ \ {0} be the element related to X (see Definition A.12 and Proposition A.13(a)).

Because of λ 6= 0 there exists some Z0 ∈ a with λ(Z0) = 1 , and then Definition A.12 shows

that we have

X̂ = [Z0, X] . (4.22)

Furthermore we put

ĝ := Exp( t0 X̂ ) ∈ K with t0 := π
‖λ]‖ ,

where K is the isotropy group of the G-action on M at the “origin point” p0 and Exp : k → K

is the exponential map of K . Then we have by Proposition A.15(a)

Ad(ĝ)|a = Rλ . (4.23)

Below, we will show

Ad(ĝ)m′ = m′ . (4.24)

We then obtain via Proposition A.15(b) for every µ ∈ ∆′

m′
µ◦(Rλ)−1

(4.8)
= mµ◦(Rλ)−1 ∩ m′ (A.37)

= Ad(ĝ)mµ ∩ m′ (4.24)
= Ad(ĝ)(mµ ∩ m′)

(4.8)
= Ad(ĝ)m′

µ 6= {0}
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and therefore µ◦(Rλ)−1 ∈ ∆′ . This shows that ∆′ is invariant under the Weyl group W (m′, a′) .

For the proof of Equation (4.24), we let Y ∈ m′ be given and consider the function

f : IR → m, t 7→ Ad(Exp(t X̂))Y = exp(t ad(X̂))Y ,

where exp : End(g) → GL(g) is the usual exponential map of endomorphisms. f solves the

differential equation

y′ = ad(X̂)y . (4.25)

Because m′ is a Lie triple system, it follows from Equation (4.22) that the endomorphism ad(X̂)

leaves m′ invariant. Because we also have f(0) = Y ∈ m′ , the solution f of the differential

equation (4.25) runs entirely in m′ . In particular we have Ad(ĝ)Y = f(t0) ∈ m′ . Thus we have

shown Ad(ĝ)m′ ⊂ m′ ; because Ad(ĝ) is a linear isomorphism, we conclude (4.24). �

4.7 Definition. Let m′ ⊂ m be a Lie triple system and a a Cartan subalgebra of m so that

a′ := a ∩ m′ is a Cartan subalgebra of m′ . Let α ∈ ∆(m′, a′) be given. Remember that by

Proposition 4.6(a) there exists at least one root λ ∈ ∆(m, a) with λ|a′ = α . We call α

(a) elementary, if there is only one root λ ∈ ∆(m, a) with λ|a′ = α ;

(b) composite, if there are at least two different roots λ, µ ∈ ∆(m, a) with λ|a ′ = µ|a′ = α .

In the situation described in Definition 4.7, elementary roots play a special role: If α ∈ ∆(m ′, a′)
is elementary, then the root space m′

α is contained in the root space mλ , where λ ∈ ∆(m, a) is

the unique root with λ|a′ = α (see Proposition 4.6(a)). As we will see in Proposition 4.9 and

its corollary below, this property causes restrictions for the possible positions (in relation to a ′ )
of λ .

It should be mentioned that in the case rk(m′) = rk(M) we have a′ = a , and therefore in that

case

every α ∈ ∆(m′, a′) is elementary

(see Proposition 4.6(b)).

4.8 Lemma. Let a be a Cartan subalgebra of m . Then we have

∀λ ∈ ∆(m, a), X ∈ mλ, Z ∈ a : ad(X)2Z = −‖X‖2 · λ(Z) · λ] .

Proof. Let λ ∈ ∆(m, a) and X ∈ mλ be given. By Proposition A.13(a), there is exactly one

X̂ ∈ kλ which is related to X ∈ mλ in the sense of Definition A.12, meaning in particular that

we have for given Z ∈ a

[Z,X] = λ(Z) · X̂ . (4.26)

By Proposition A.13(b) we also have

[X, X̂ ] = ‖X‖2 · λ] . (4.27)
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Using these equations, we calculate:

ad(X)2Z = [X, [X,Z]] = −[X, [Z,X]]
(4.26)
= −λ(Z) · [X, X̂ ]

(4.27)
= −λ(Z) · ‖X‖2 · λ] . �

4.9 Proposition. Let m′ ⊂ m be a Lie triple system, and a a Cartan subalgebra of m so that

a′ := a∩m′ is a Cartan subalgebra of m′ . If α ∈ ∆(m′, a′) is an elementary root and λ ∈ ∆(m, a)

is the unique root with λ|a′ = α , then we have

λ] ∈ a′ .

If, on the other hand, λ ∈ ∆(m, a) satisfies λ|a′ = 0 , then we obviously have

λ] ⊥ a′ .

Proof. Let α ∈ ∆(m′, a′) be an elementary root and λ ∈ ∆(m, a) be the root with λ|a′ = α .

Then we fix Z ∈ a′ so that λ(Z) = α(Z) = −1 holds and X ∈ S(m′
α) arbitrarily. We have

X ∈ m′
α ⊂ mλ by Proposition 4.6(a) and the fact that α is elementary, and therefore by

Lemma 4.8

m′ (∗)
3 ad(X)2Z = −‖X‖2 · λ(Z) · λ] = λ] ,

where (∗) follows from the fact that m′ is a Lie triple system. Therefore we have λ] ∈ m′∩a = a′ .

The statement on the case λ ∈ ∆(m, a) with λ|a′ = 0 is obvious. �

4.10 Corollary. Let m′ ⊂ m be a Lie triple system with rk(m′) = 1 , and let X ∈ m′ \ {0} be given.

Then a′ := IRX is a Cartan subalgebra of m′ and there exists a Cartan subalgebra a of m so

that a′ = a ∩ m′ holds.

If α ∈ ∆(m′, a′) is an elementary root of m′ and λ ∈ ∆(m, a) the unique root with λ|a′ = α ,

then λ] is parallel to X .

Proof. The existence of a follows from Theorem A.8(b) and the remainder is an immediate

consequence of Proposition 4.9. �

4.11 Remark. Investigating root systems of Lie algebras, Eschenburg used similar concepts as

our elementary/composite roots, see [Esc84], Abschnitt 91, p. 131ff. . That situation is different

from ours, because in contrary to symmetric spaces, the root spaces of Lie algebras are always

1-dimensional.

4.3 The classification of the rank 2 Lie triple systems

We now start with the proof that the list of curvature-invariant subspaces of the CQ-space

(V,A) given in Theorem 4.2 is in fact complete. We put m := dimC(V) , let (Ṽ, Ã) be an

arbitrary (m+2)-dimensional CQ-space, let Q := Q(Ã) be the m-dimensional complex quadric
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induced thereby and put G := Auts(Ã)0 . We regard Q as a Hermitian symmetric G-space

(Q,Ψ, p0, σ) as in Section 3.2 and consider the canonical decomposition g = k ⊕ m of the

Lie algebra g of G with respect to σ . Then m is an m-dimensional CQ-space in the way

described in Proposition 3.12. As CQ-space, it is isomorphic to (V,A) by Corollary 2.16, and

thus we may suppose without loss of generality that (V,A) is equal to the CQ-space m . In the

sequel, we denote the complex inner product given on m by 〈·, ·〉C , the real inner product by

〈·, ·〉 = Re(〈·, ·〉C) , the complex structure of m by J : m → m, X 7→ iX and the CQ-structure

of m by A .

We let a curvature-invariant subspace m′ 6= {0} of the CQ-space m be given. Then Propo-

sition 3.12(c) shows that m′ is a Lie triple system in m . We have rk(m′) ≤ rk(Q) = 2 and

therefore rk(m′) ∈ {1, 2} . The two resulting cases rk(m′) = 2 and rk(m′) = 1 divide the proof

of the classification theorem into two main parts. We treat the case rk(m′) = 2 in the present

section, and the case rk(m′) = 1 in the next section.

Thus we now suppose rk(m′) = 2 . We fix a Cartan subalgebra a of m′ ; because of rk(m′) =

2 = rk(Q) , a also is a Cartan subalgebra of m . In the sequel, we denote by ∆ := ∆(m, a) and

∆′ := ∆(m′, a) the root systems of m resp. of m′ with respect to a . In this relation, we use

the notations introduced in Section 4.2. Then we have by Proposition 4.6(b)

∆′ ⊂ ∆ and ∀α ∈ ∆′ : m′
α = mα ∩ m′ ⊂ mα . (4.28)

Therefore ∆′
+ := ∆+ ∩ ∆′ is a system of positive roots of ∆′ , where ∆+ := {λ1, . . . , λ4} is

the system of positive roots of ∆ described in Theorem 3.15(b). Further, we have by Proposi-

tion 4.6(a)

m′ = a ⊕ ©
α∈∆′

+

m′
α . (4.29)

Moreover, the root system ∆′ is invariant under the Weyl group W (m′, a′) by Proposi-

tion 4.6(b), and this fact imposes restrictions on the subsets of ∆+ = {λ1, . . . , λ4} which

can occur as ∆′
+ . For example ∆′

+ = {λ1, λ4} is impossible, because then ∆′ = ∆′
+∪̇(−∆′

+)

would not be invariant under the reflection in the line orthogonal to λ1 . (For the calculation of

the action of the Weyl group on the λk , note the relationship between its action on λk and on

λ]k given by Equation (A.36) and the explicit description of the λ]k in Theorem 3.15(b).)

By this consideration we see that ∆′
+ must be one of the following eight sets:

∅ , {λ1} , {λ2} , {λ3} , {λ4} , {λ1, λ2} , {λ3, λ4} , {λ1, λ2, λ3, λ4} .

We now inspect the eight cases of possible ∆′
+ individually to verify that the corresponding

Lie triple systems m′ are all of of one of the types (G1, k) , (G2, k1, k2) and (G3) as they are

described in Theorem 4.2.

For this purpose, we note that by Theorem 3.15(a), there exist A ∈ A and an orthonormal

system (X,Y ) in V (A) so that a = IRX ⊕ IRJY holds. Also, we put nα := dim(m′
α) for

α ∈ ∆′ , and continually use the data on the root system ∆+ = {λ1, . . . , λ4} and the root

spaces mλk
given in Theorem 3.15(b).
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The case ∆′
+ = ∅ . By Equation (4.29) we have m′ = a = IRX ⊕ IRJY , and therefore, m′ is of

type (G2, 1, 1) with W1 := IRX , W2 := IRY .

The case ∆′
+ = {λ1} . By Equation (4.29) we have m′ = a⊕m′

λ1
; by (4.28) and Theorem 3.15(b)

we have m′
λ1

⊂ mλ1 = J((IRX⊕ IRY )⊥,V (A)) . It follows that m′ is of type (G2, 1, 1+n′
λ1

) with

W1 := IRX and W2 := IRY 	 Jm′
λ1

.

The case ∆′
+ = {λ2} . Analogously as in the case ∆′

+ = {λ1} we see that m′ is of type

(G2, 1 + n′λ2
, 1) with W1 := IRX 	 m′

λ2
and W2 := IRY .

The case ∆′
+ = {λ3} . By Equation (4.29) we have m′ = a ⊕ m′

λ3
. We have {0} 6= m′

λ3
⊂ mλ3 ;

because mλ3 is 1-dimensional, therefrom already m′
λ3

= mλ3 = IR(JX + Y ) follows. Thus we

have

m′ = a ⊕ mλ3 = IRX ⊕ IRJY ⊕ IR(JX + Y )

= IR(X + JY ) ⊕ IR(X − JY ) ⊕ IR(JX + Y ) = IR(X + JY ) ⊕ C(X − JY ) ,

and therefore m′ is of type (G3) .

The case ∆′
+ = {λ4} . Analogously as in the case ∆′

+ = {λ3} we obtain m′ = IR(X − JY ) ⊕
C(X + JY ) . By replacing Y with −Y , we see that also in this case m′ is of type (G3) .

The case ∆′
+ = {λ1, λ2} . By Equation (4.29) we have

m′ = a ⊕ m′
λ1

⊕ m′
λ2

= W1 ⊕ J(W2) (4.30)

with W1 := IRX ⊕ m′
λ2

and W2 := IRY ⊕ J(m′
λ1

) . Together with Equation (4.28), the table

in Theorem 3.15(b) shows that m′
λ1
,m′

λ2
⊂ (IRX ⊕ IRY )⊥,V (A) ⊂ V (A) holds, and therefore we

have W1,W2 ⊂ V (A) .

We now show W1 ⊥ W2 : Let u ∈ W2 and v ∈ W1 be given, and assume that 〈u, v〉 6= 0

holds. We have Ju, v ∈ m′ by Equation (4.30), and therefore Corollary 2.48 shows that m′ is a

complex-linear subspace of m . Because we have X + JY ∈ a ⊂ m′ , it follows that we also have

−Y + JX = J(X + JY ) ∈ m′ . Hence we have mλ4 = IR(JX − Y ) ⊂ m′ (see Theorem 3.15(b))

and therefore m′
λ4

= mλ4 ∩ m′ = mλ4 (see Proposition 4.6(b)), whence λ4 ∈ ∆′
+ follows. But

this is a contradiction to the hypothesis ∆′
+ = {λ1, λ2} defining the present case.

Therefore m′ is of type (G2, 1 + n′
λ2
, 1 + n′λ1

) with the present choice of W1 and W2 .

The case ∆′
+ = {λ3, λ4} . For k ∈ {3, 4} we have dimmλk

= 1 , and therefore the same

argument as in the treatment of the case ∆′
+ = {λ3} shows that m′

λk
= mλk

holds. Thus we

have by Equation (4.29)

m′ = a ⊕ m′
λ3

⊕ m′
λ4

= (IRX ⊕ IRJY ) ⊕ IR(JX + Y ) ⊕ IR(JX − Y )

= IRX ⊕ IRJY ⊕ IRJX ⊕ IRY = CX ⊕ CY .

Thus we have m′ = W ⊕ JW with W := IRX 	 IRY ⊂ V (A) . Therefore m′ is a 2-dimensional

CQ-subspace and hence of type (G1, 2) .
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The case ∆′
+ = {λ1, λ2, λ3, λ4} . By Equation (4.29) we have

m′ = a ⊕ m′
λ1

⊕ m′
λ2

⊕ m′
λ3

⊕ m′
λ4
, (4.31)

and by an analogous argument as for the case ∆′
+ = {λ3, λ4} , we see that

m′ (4.31)
⊃ a ⊕ m′

λ3
⊕ m′

λ4
= CX ⊕ CY (4.32)

holds. In particular we have X, JX ∈ m′ , whence it follows by Corollary 2.48 that m′ is a

complex-linear subspace of m . Therefrom m′
λ1

= J(m′
λ2

) follows, and thus we obtain from

Equations (4.31) and (4.32):

m′ = CX ⊕ CY ⊕ J(m′
λ2

) ⊕ m′
λ2

= W ⊕ JW

with W := IRX 	 IRY 	 m′
λ2

⊂ V (A) . Therefore m′ is a (2 + n′λ2
)-dimensional CQ-subspace

and hence of type (G1, 2 + n′
λ2

) .

This completes the classification of the rank 2 Lie triple systems in m .

4.4 The classification of the rank 1 Lie triple systems

We continue to use the general notations of the previous section, but now suppose that {0} 6= m ′

is a Lie triple system of m of rank 1 . For H ∈ m \ {0} we denote by ϕ(H) the A-angle of H

as in Section 2.5.

4.12 Lemma. If dimm′ ≥ 2 holds, then all Z ∈ m′ \ {0} have one and the same A-angle ϕ0 ∈
{0, arctan( 1

2 ), π4} . In the case ϕ0 = arctan( 1
2 ) , m′ has no elementary roots (see Definition 4.7).

Proof. The crucial point here is to show

∀Z ∈ m′ \ {0} : ϕ(Z) ∈ {0, arctan( 1
2 ), π4} . (4.33)

For this, we let Z ∈ m′ \ {0} be given; without loss of generality we may suppose ‖Z‖ = 1 .

Then we have the canonical decomposition

Z = cos(ϕ(Z)) ·X + sin(ϕ(Z)) · JY (4.34)

with suitable A ∈ A and X,Y ∈ S(V (A)) .

Because m′ is of rank 1 , a′ := IRZ is a Cartan subalgebra of m′ ; also a := IRX ⊕ IRJY is a

Cartan subalgebra of m such that a′ = a ∩ m′ holds. Because of dim(m′) > rk(m′) , we have

∆(m′, a′) 6= ∅ . Now let some α ∈ ∆(m′, a′) be given.

Let us first suppose that α is elementary. Then there exists one and only one λ ∈ ∆(m, a) with

λ|a′ = α , and Corollary 4.10 shows that Z is parallel to λ] , hence we have ϕ(Z) = ϕ(λ]) .
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From the explicit representation of the root vectors λ]k in Theorem 3.15(b) and Theorem 2.28(a)

one easily calculates

ϕ(±λ]1) = ϕ(±λ]2) = 0 and ϕ(±λ]3) = ϕ(±λ]4) = π
4 .

Because of λ ∈ ∆(m, a) = {±λ1, . . . ,±λ4} we therefrom see that ϕ(Z) = ϕ(λ]) ∈ {0, π4 } holds.

Now we suppose that α is composite. Then there exist λ, µ ∈ ∆(m, a) with

µ|a′ = α = λ|a′ (4.35)

and µ 6= λ ; we also have µ 6= −λ (because otherwise we would have α = 0 6∈ ∆(m′, a′) ).

Therefore there exist r, s ∈ {1, . . . , 4} with r 6= s so that λ ∈ {±λr} , µ ∈ {±λs} holds (where

the λk form the positive root system of m described in Theorem 3.15(b)), and thus we have

for every t ∈ IR

λ(cos(t)X + sin(t)JY )2 = κr(t) and µ(cos(t)X + sin(t)JY )2 = κs(t)

(where the κk are the eigenfunctions of the Jacobi operator as in Theorem 2.49; compare

Equations (3.24) and (3.23) in the proof of Theorem 3.15). By plugging t = ϕ(Z) in these

equations, we obtain via Equation (4.34)

λ(Z)2 = κr(ϕ(Z)) and µ(Z)2 = κs(ϕ(Z)) (4.36)

and therefore

κr(ϕ(Z))
(4.36)
= λ(Z)2

(4.35)
= µ(Z)2

(4.36)
= κs(ϕ(Z)) .

The diagram of the graphs of the functions κk in Theorem 2.49 thus shows that ϕ(Z) ∈
{0, arctan( 1

2 ), π4} holds.

This completes the proof of (4.33). We also saw that if Z ∈ m′ \ {0} is such that ∆(m′, IRZ)

contains an elementary root, then ϕ(Z) 6= arctan( 1
2) holds.

Equation (4.33) shows that the function m′ \ {0} → IR, Z 7→ ϕ(Z) attains only discrete values;

because this function is continuous by Proposition 2.30, it follows that it is constant. It also

follows from (4.33) that the constant value ϕ0 of that function is a member of {0, arctan( 1
2), π4 } .

Finally, in the case ϕ0 = arctan( 1
2) we have for any Cartan subalgebra a′ of m′ , say a′ =

IRZ with some Z ∈ S(m′) , ϕ(Z) = arctan( 1
2) and therefore ∆(m′, a′) does not contain any

elementary roots. �

We now classify the Lie triple systems m′ of rank 1 in m . For this purpose we fix Z ∈ S(m′) and

use the notation concerning the Cartan algebras a′ = IRZ and a introduced at the beginning

of the proof of Lemma 4.12. In particular we have the canonical decomposition of Z given in

Equation (4.34). We abbreviate ∆′ := ∆(m′, a′) and ∆ := ∆(m, a) and fix a system of positive

roots ∆′
+ in ∆′ . Then we have by Proposition 4.6(a)

∆′ ⊂ {λ|a′ |λ ∈ ∆, λ(Z) 6= 0 } (4.37)
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and

m′ = IRZ ⊕ ©
α∈∆′

+

m′
α (4.38)

with

∀α ∈ ∆′
+ : m′

α =


 ©

λ∈∆
λ(Z)=α(Z)

mλ


 ∩ m′ . (4.39)

In the case dimm′ = 1 , m′ = IRZ is of type (Geo, ϕ(Z)) . Thus we suppose in the sequel that

dimm′ ≥ 2 holds. Then Equation (4.38) shows that we have

∆′ 6= ∅ , (4.40)

and on m′ \ {0} the A-angle function ϕ is equal to some constant ϕ0 ∈ {0, arctan( 1
2 ), π4 }

by Lemma 4.12. To complete the classification, we now treat the three possible values for ϕ0

individually.

The case ϕ0 = 0 . Then we have Z = X by Equation (4.34). By Theorem 3.15(b) we have

λ1(X) = 0 and λ2(X) = λ3(X) = λ4(X) =
√

2 ;

therefrom we conclude by (4.37) and (4.40)

∆′ = {±α} with α(tZ) =
√

2 · t for t ∈ IR

and by (4.38) and (4.39)

m′ = IRX ⊕ m′
α with {0} 6= m′

α ⊂ mλ2 ⊕ mλ3 ⊕ mλ4 . (4.41)

Immediately, we will show that

either m′
α ⊂ (IRX)⊥,V (A) or m′

α = IR · JX (4.42)

holds. Then we conclude: In the case m′
α ⊂ (IRX)⊥,V (A) we have m′ = a′ ⊕ m′

α ⊂ V (A) ,

therefore m′ is of type (P1, 1+dimm′
α) . On the other hand, in the case m′

α = IR ·JX we have

m′ = a′ ⊕ m′
α = CX , therefore m′ is of type (P2) .

We now prove (4.42): Let H ∈ m′
α be given. Then we have by (4.41) and Theorem 3.15(b)

H ∈ mλ2 ⊕ mλ3 ⊕ mλ4 = IR · JX ⊕ (IRX)⊥,V (A)

and therefore there exist t ∈ IR and X ′ ∈ V (A) with X ′ ⊥ X so that H = t · JX +X ′ holds.

Via Proposition 2.47 we calculate (with the functions ρ and C defined there)

ρ(X,H) = −2t and C(X,H) = 2X ∧X ′

and therefore

H̃ := 1
2R(X,H)H = (‖X ′‖2 + t2) ·X − 2t · JX ′ . (4.43)
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Because m′ is curvature-invariant, we have H̃ ∈ m′ . As m′ is orthogonal to IRJY ⊕ mλ1 =

(IRJX)⊥,JV (A) by Equation (4.41) and hence in particular to JX ′ , we therefore have

0 = 〈H̃, JX ′〉IR = (−2t) · 〈JX ′, JX ′〉IR = (−2t) · ‖X ′‖2 .

Therefore we have either t = 0 , implying H = X ′ ∈ (IRX)⊥,V (A) ; or else ‖X ′‖ = 0 , implying

H = t · JX ∈ IRJX . Thus, we have shown

m′
α ⊂ (IRX)⊥,V (A) ∪ IR · JX .

Because m′
α is a linear space, we in fact have

either m′
α ⊂ (IRX)⊥,V (A) or m′

α ⊂ IR · JX ;

if the second case holds, then we actually have m′
α = IR ·JX because of m′

α 6= {0} . Thus (4.42)

is shown.

The case ϕ0 = arctan( 1
2) . By Equation (4.34) we then have

Z = 2√
5
X + 1√

5
JY , (4.44)

and from Theorem 3.15(b) we thus obtain

λ1(Z) =
√

2√
5
, λ2(Z) = 2

√
2√
5
, λ3(Z) =

√
2√
5

and λ4(Z) = 3
√

2√
5
. (4.45)

Because of ϕ0 = arctan( 1
2 ) Lemma 4.12 shows that there do not exist any elementary roots in

∆′ ; therefore we conclude from Equations (4.45) by (4.37) and (4.40)

∆′ = {±α} with α(tZ) =
√

2√
5
· t for t ∈ IR

and by (4.38) and (4.39)

m′ = IRZ ⊕ m′
α with {0} 6= m′

α ⊂ mλ1 ⊕ mλ3 . (4.46)

We now show

∀H ∈ S(m′
α) ∃U ∈ S(V (A)) :

(
H = ± 1√

5
(Y + JX +

√
3JU) and U ⊥ X,Y

)
. (4.47)

Let H ∈ S(m′
α) be given. Then we have by (4.46) and Theorem 3.15(b)

H ∈ mλ1 ⊕ mλ3 = J(IRX ⊕ IRY )⊥,V (A) ⊕ IR(JX + Y ) .

Consequently there exist U ′ ∈ V (A) with U ′ ⊥ X,Y and t ∈ IR so that

H = JU ′ + t · (JX + Y ) = tY + J(U ′ + tX) (4.48)

and therefore

ReAH = tY and ImAH = U ′ + tX , (4.49)

hence

‖ReAH‖2 = t2 and ‖ ImAH‖2 = ‖U ′‖2 + t2 (4.50)
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holds. Equations (4.49) show that ReAH is orthogonal to ImAH , and therefore either A or

−A is adapted to H by Proposition 2.32(a).

In fact −A is adapted to H : If A were adapted to H , then we would have by Theorem 2.28(c)

‖ReAH‖2 = (cosϕ(H))2 = (cosϕ0)
2 = 4

5 and ‖ ImAH‖2 = (sinϕ(H))2 = (sinϕ0)
2 = 1

5

and thus ‖ReAH‖2 = 4 ‖ ImAH‖2 . This equation implies via Equations (4.50) −3t2 = 4‖U ′‖2

and therefore t = ‖U ′‖ = 0 . Because of Equation (4.48) H = 0 follows, which is a contradiction.

Because −A is adapted to H , we have by Theorem 2.28(c)

‖Re−AH‖2 = (cosϕ(H))2 = (cosϕ0)
2 = 4

5 and ‖ Im−AH‖2 = (sinϕ(H))2 = (sinϕ0)
2 = 1

5

By Proposition 2.3(e),(g) we have ReAH = ImA(JH) = J Im−A(H) and ImAH =

−ReA(JH) = −J Im−A(H) , and therefore it follows

‖ReAH‖2 = 1
5 and ‖ ImAH‖2 = 4

5 .

From Equations (4.50) we thus obtain t2 = 1
5 and ‖U ′‖2 + t2 = 4

5 , and hence there exists

ε ∈ {±1} so that

t = ε 1√
5

and ‖U ′‖ =
√

3
5

holds. Consequently, we have U := ε
√

5/3 ·U ′ ∈ S(V (A)) . Equation (4.48) shows that we have

H = ε 1√
5
(Y + JX +

√
3 JU) , and therefore (4.47) is satisfied with this choice of U .

Next we prove dimm′
α = 1 : Let H1,H2 ∈ S(m′

α) be given; we will show H2 = ±H1 . By (4.47),

there exist ε1, ε2 ∈ {±1} and U1, U2 ∈ S(V (A)) so that

Hk = εk√
5
· (Y + JX +

√
3JUk)

holds for k ∈ {1, 2} . Under the assumption H2 6= ±H1 we could suppose without loss of

generality that ε1 = ε2 = 1 holds, and then H1 −H2 =
√

3/5 · J(U1 −U2) would be a non-zero

A-principal vector contained in m′
α ⊂ m′ . But this is a contradiction to ∀H ∈ m′ \{0} : ϕ(H) =

arctan( 1
2 ) .

Thus, m′
α is 1-dimensional, and therefore we have m′ = a′ ⊕ m′

α = IRZ ⊕ IRH with any

H ∈ S(m′
α) . Equations (4.44) and (4.47) therefore show that m′ is a space of type (A) .

The case ϕ0 = π
4 . m′ is an A-isotropic subspace of m (see Proposition 2.29(b)); therefore

the “complex closure” m̂′ := m′ + Jm′ ⊂ m of m′ also is an A-isotropic subspace by Proposi-

tion 2.20(d), and hence a curvature-invariant subspace of m of type (I1, k) with k := dimC m̂′ .
Proposition 2.43(d) shows that the restriction of the curvature tensor of the CQ-space m to

m̂′ is the curvature tensor of a complex projective space of constant holomorphic sectional

curvature 4 .

If m′ is a complex subspace of V , we have m′ = m̂′ ; therefore m′ then is of type (I1, k) .

Otherwise, m′ is a curvature-invariant subspace of m̂′ ; by the well-known classification of totally

geodesic submanifolds in a complex projective space, it follows that m′ is a totally real subspace
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of m̂′ , and therefore a k-dimensional totally real, isotropic subspace of V . Consequently, m ′ is

of type (I2, k) .

This completes the proof of Theorem 4.2. �

4.13 Remark. Chen and Nagano gave in their paper [CN77] (1977) a classification of the totally

geodesic submanifolds of the complex quadric using a different approach. We briefly describe

their strategy. They study the complex quadric Qm in two different ways: On the one hand,

they investigate the oriented real Grassmannian G+
2 (IRm+2) (which is homothetic to Qm , as

we noted in Remark 2.24) as a submanifold of
∧2IRm+2 ; it should be noted that

∧2IRm+2

can be canonically identified with auts(C
m+2) ∼= o(m + 2) . On the other hand, they regard

Qm as a Riemannian symmetric space isomorphic to SO(m + 2)/(SO(2) × SO(m)) (see Re-

mark 3.10(a)). Now they make the following approach: If M is a connected, complete, totally

geodesic submanifold of Q , then M can be regarded as a symmetric subspace G′/K ′ of Q ,

where G′ is a subgroup of SO(m+ 2) (see [KN69], Theorem XI.4.2, p. 235). In the usual way,

the symmetric structure of M gives rise to a splitting g′ = k′ ⊕m′ of the Lie algebra of G , we

have k′ ⊂ o(2) ⊕ o(m) , m′ is a Lie triple system canonically isomorphic to the tangent space of

M and k′ acts on m′ by the adjoint representation. Chen/Nagano now distinguish three cases:

(1) k′ acts irreducibly on m′ and k′ ⊂ o(m) holds (Lemmata 3.1–3.3), (2) k′ acts irreducibly

on m′ and k′ 6⊂ o(m) holds (Lemma 3.4), (3) k′ acts reducibly on m′ (Lemma 3.5). In the

treatment of these cases, k′ and m′ are regarded as subsystems of o(m+2) ∼=
∧2IR

m+2
; explicit

calculations of the Lie bracket of such elements play an important role.

Some of the arguments of [CN77] appear to be faulty, mainly in the proof of case (2) as described

above; because case (3) is treated by reduction to the cases (1) and (2), this gap also concerns

case (3). The fact that the spaces of our type (A) are missing from the paper seems to stem

from an oversight in the proof of its Lemma 3.4. Also, there is an unfounded assumption in the

proof of Lemma 3.5, which causes the totally geodesic submanifolds of type (G3) to be missed.

Moreover, it is incorrectly stated that the totally geodesic submanifolds corresponding to our

case (I1, k′) are neither complex nor totally real submanifolds of Q .

We should also mention the older paper [CL75] by Chen and Lue (1975), where the real-2-

dimensional curvature-invariant subspaces of TpQ are classified. Chen and Lue find eight types

of such subspaces, which they denote by I, . . . , VIII; the correspondence between their types

and the types of curvature-invariant subspaces in our notation is as follows:

Type of [CL75] I II III IV V VI VII VIII

Type of Thm. 4.2 (I2, 2) (A) (P2) (I1, 1) (P1, 2) (G2, 1, 1) (G2, 1, 1) (G2, 1, 1)

Interestingly the spaces of type (A) , which are missing from [CN77], can be found here. Also

note that our type (G2, 1, 1) is divided in [CL75] into the three types VI, VII and VIII; this

division is necessary because Chen/Lue do not have the concept of a conjugation adapted to a

vector (or to a 2-flat) available.
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In 1978, Chen and Nagano introduced their famous (M+,M−)-method for determining totally

geodesic submanifolds of symmetric spaces, see [CN78]. This method is based on the following

idea: Suppose M is a symmetric space of compact type and p ∈M . To every closed geodesic

c : [0, δ] → M with c(0) = c(δ) = p , it is associated a pair (M+(c),M−(c)) of totally geodesic

submanifolds of M ; we denote the set of isometry classes of such pairs by P (M) . It can

be shown that P (M) is finite. Now, let a totally geodesic embedding f : B → M of another

symmetric space B of compact type be given. Then it can be shown that for every pair (B+, B−)

of B there exists a pair (M+,M−) of M so that f(B±) is a totally geodesic submanifold of

M± . If one now tabulates P (M) for the finitely many isometry classes of irreducible symmetric

spaces M of compact type (this is done in [CN78]), one can use this information to exclude

symmetric spaces which cannot occur as totally geodesic submanifolds of M . Frequently, among

the finitely many types of symmetric spaces of compact type and rank ≤ rk(M) , only a few

candidates B for totally geodesic submanifolds of M remain. However, not necessarily all these

candidates occur as totally geodesic submanifolds of M . To complete the classification of the

totally geodesic submanifolds of M , one therefore must for every candidate B either construct

a totally geodesic embedding of B into M explicitly (thereby showing that B indeed occurs

as a totally geodesic submanifold of M ), or show by other means that B cannot occur as a

totally geodesic submanifold of M .

As an application, Chen and Nagano give in [CN78] the maximal totally geodesic submanifolds

of the irreducible symmetric spaces of compact type and rank 2 . The manifolds of type (G3) ,

which are maximal totally geodesic submanifolds of Q2 , and the manifolds of type (A) , which

are maximal totally geodesic submanifolds of Q3 , are again missing.
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Chapter 5

Totally geodesic submanifolds

In the previous chapter, we classified the curvature-invariant subspaces of the tangent space

TpQ of an m-dimensional complex quadric Q . These subspaces of TpQ are in bijective corres-

pondence with the connected, complete, totally geodesic submanifolds of Q through p .

We now wish to find out which (connected, complete) totally geodesic submanifolds MU of Q

correspond to the various curvature-invariant subspaces U ⊂ TpQ . The isometry type of the

universal covering manifold M̃U of MU (and therefore the local isometry type of MU ) is easily

determined via the theorem of Cartan/Ambrose/Hicks by computing the restriction of the

curvature tensor R of Q to U ; in this way one obtains the results of the following table. In

this table we denote the universal cover of the sphere Skr (with k ∈ IN and r ∈ IR+ ) by S̃kr ;

we have S̃kr = Skr for k ≥ 2 and S̃kr = IR for k = 1 .

type of U with ... isometry class of M̃U

(Geo, t) t ∈ [0, π4 ] IR

(G1, k) 2 ≤ k ≤ m− 1 Qk

(G2, k1, k2) k1, k2 ≥ 1, k1 + k2 ≤ m S̃k1
1/

√
2
× S̃k2

1/
√

2

(G3) CP1 × IR

(P1, k) 1 ≤ k ≤ m S̃k
1/

√
2

(P2) Q1

(A) S2√
10/2

(I1, k) 1 ≤ k ≤ m
2 CPk

(I2, k) 1 ≤ k ≤ m
2 S̃k1

However, we want to know more: namely the exact global structure of MU and how MU lies in

Q . For that we need to construct totally geodesic isometric embeddings of suitable Riemannian

manifolds onto MU explicitly; we will be successful for all types of curvature invariant subspaces

U except for the type (A) . Thereby we will prove in particular:

5.1 Theorem. Let p ∈ Q and U ⊂ TpQ be a curvature-invariant subspace. Then the global

isometry class of the connected, complete, totally geodesic submanifold MU of Q with p ∈MU

and TpMU = U is given in the following table in dependence of the type of U .

119
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type of U with ... isometry class of MU
MU complex or

totally real?

(Geo, t) t ∈ [0, π4 ], tan(t) ∈ Q S1
L/2π, see 10 totally real

(Geo, t) t ∈ [0, π4 ], tan(t) ∈ IR \ Q IR totally real

(G1, k) 2 ≤ k ≤ m− 1 Qk complex

(G2, k1, k2) k1, k2 ≥ 1, k1 + k2 ≤ m (Sk1
1/

√
2
× Sk2

1/
√

2
)/{±id} totally real

(G3) CP1 × IRP1 neither

(P1, k) 1 ≤ k ≤ m Sk
1/

√
2

totally real

(P2) Q1 complex

(A) S2√
10/2

neither

(I1, k) 1 ≤ k ≤ m
2 CPk complex

(I2, k) 1 ≤ k ≤ m
2 IRPk totally real

Here CPk is equipped with the Fubini-Study metric of constant holomorphic sectional curvature

4 as usual, and IRPk is equipped with a Riemannian metric of constant sectional curvature 1 .

From the construction of the embeddings we will also obtain some further results: In Section 5.4,

an investigation of the geodesics of Q will show which of them are closed and what their minimal

period is. It follows from this investigation that the diameter of any complex quadric is π/
√

2 .

In Section 5.5 we will obtain two foliations on the 2-dimensional quadric Q2 , one perpendicular

to the other, by a natural construction. It will turn out that these foliations correspond via the

Segre embedding IP1× IP1 → Q2 (see Section 3.4) to the canonical foliations of the Riemannian

product manifold IP1 × IP1 . Finally, in Section 5.8 we will derive from Theorem 5.1 the result

that any two (connected, complete) totally geodesic submanifolds of real dimension ≥ 3 which

are isometric to each other are already holomorphically congruent in Q and therefore of the

same type.

As before, we suppose that (V,A) is an (m + 2)-dimensional CQ-space and consider the m-

dimensional complex quadric Q := Q(A) . We will see in Section 8.1 that in the case m = 1 ,

Q is isometric to a 2-dimensional sphere S , and therefore the totally geodesic submanifolds of

Q then correspond to great circles on S . Thus we now suppose m ≥ 2 .

As in Chapter 1, we put Q̃ := Q̃(A) , we denote by π : S(V) → IP(V) the Hopf fibration and by

Hz and HzQ the horizontal lift at z ∈ S(V) of the tangent space Tπ(z)IP(V) resp. Tπ(z)Q . As

usual, we will take the liberty of denoting by 〈·, ·〉 the inner product resp. the Riemannian metric

of any of the euclidean spaces resp. Riemannian manifolds involved in the following constructions;

also we will denote by J the complex structure of any unitary space or Hermitian manifold.

5.1 Preparations

As a preparation we establish that we can assign a type (in the sense of Theorem 4.2) not

only to curvature-invariant subspaces of TpQ , but also to the corresponding totally geodesic

submanifolds:

10Here L is the minimal period of the geodesic γv : IR → Q with γv(0) = p , γ̇v(0) = v , see Proposition 5.18.
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5.2 Proposition. Let M be a connected, complete, totally geodesic submanifold of Q . Then all

curvature-invariant subspaces TpM (where p ∈ M ) are of one and the same type in the sense

of Theorem 4.2.

In the sequel, we assign this type also to the totally geodesic submanifold M .

Proof. M is in particular a homogeneous subspace of the symmetric Auts(A)0-space Q (see

[KN69], Theorem XI.4.2, p. 235), meaning that there exists a Lie subgroup G of Auts(A)0
whose elements leave M invariant and which acts transitively on M . Hence there exists for

any given p1, p2 ∈M some B ∈ G ⊂ Aut(A) with B(M) = M and p2 = B(p1) , and therefore

also Tp2M = B∗Tp1M . Because B∗|Tp1Q : Tp1Q→ Tp2Q is a CQ-isomorphism, it follows that

Tp1M and Tp2M are of the same type, see Theorem 4.2. �

5.3 Corollary. The subbundles { v ∈ S(TM) |ϕ(v) = ϕ0 } (with ϕ0 ∈ [0, π4 ] ) of the unit sphere

bundle S(TM) are invariant under the geodesic flow of Q . This means more explicitly: For

every non-stationary geodesic γ : IR → Q and every t ∈ IR , we have ϕ(γ̇(t)) = ϕ(γ̇(0)) .

Proof. Let γ : IR → Q be a non-stationary geodesic, then M := γ(IR) is a real-1-dimensional

totally geodesic submanifold of Q , and for each t ∈ IR , the curvature-invariant subspace Tγ(t)M

is of type (Geo, ϕ(γ̇(t))) . Therefore the statement follows from Proposition 5.2. �

We now show some very simple lemmas which will be of general use in the following constructions.

5.4 Lemma. Let M be a Kähler manifold and N be a connected, totally geodesic submanifold of

M . If there exists p0 ∈ N so that Tp0N is a totally real subspace of Tp0M , then N already is

a totally real submanifold of M (meaning that TpN is totally real in TpM for every p ∈ N ).

Proof. We denote the complex structure of M by J . Let p ∈ N and v, w ∈ TpN be given.

We have to show 〈v, Jw〉 = 0 .

N being connected, there exists a curve γ : [0, 1] → N with γ(0) = p0 and γ(1) = p . Moreover,

there exist vector fields X,Y ∈ Xγ(N) which are parallel with respect to the covariant derivative

of N with X1 = v and Y1 = w . We have X0, Y0 ∈ Tp0N , and therefore by the hypothesis

〈X0, JY0〉 = 0 . (5.1)

Because N is a totally geodesic submanifold of M , X and Y are also parallel with respect to

the covariant derivative of M ; because the endomorphism field J of M is parallel, it follows

that J ◦ Y is another parallel field of M . Because also the Riemannian metric 〈·, ·〉 of M

is parallel, it follows that the function t 7→ 〈Xt, JYt〉 is constant. We therefore conclude from

Equation (5.1)

〈v, Jw〉 = 〈X1, JY1〉 = 〈X0, JY0〉 = 0 .

�
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5.5 Lemma. Let M be a Riemannian manifold, M a (quasi-)regular submanifold of M and N

a totally geodesic submanifold of M . If N ⊂ M holds, then N is also a totally geodesic

submanifold of M .

Proof. N is a submanifold of M because M is a (quasi-)regular submanifold of M . We denote

by hN↪→M , hM↪→M and hN↪→M the second fundamental forms of the respective inclusion maps.

Because N is a totally geodesic submanifold of M , we have for any p ∈ N and v, w ∈ TpN

0 = hN↪→M (v, w) = hN↪→M (v, w)︸ ︷︷ ︸
∈TpM

+hM↪→M(v, w)︸ ︷︷ ︸
⊥p(M↪→M)

,

whence hN↪→M (v, w) = 0 follows. This shows that N is a totally geodesic submanifold of M .

Moreover, we see that hM↪→M vanishes on TpN × TpN . �

5.6 Lemma. Let N , M̃ and M be Riemannian manifolds, π : M̃ → M a Riemannian sub-

mersion and f̃ : N → M̃ a horizontal11 isometric immersion; we also consider the map

f := π ◦ f̃ : N →M . In this situation we have:

(a) f also is an isometric immersion. If we denote the second fundamental forms of the

isometric immersions f̃ and f by h̃ and h respectively, we have h = π∗ ◦ h̃ .

(b) If f̃ is totally geodesic, then f also is totally geodesic.

Proof. For (a). Because π∗|Hp : Hp → Tπ(p)M is a linear isometry for every p ∈ M̃ (where

Hp = (ker Tpπ)⊥ denotes the horizontal space of the Riemannian submersion π at p ), we see

that f is an isometric immersion.

Now let vector fields X,Y ∈ X(N) be given. Denoting by ∇N , ∇fM and ∇M the Levi-Civita

covariant derivatives of the respective Riemannian manifolds, we then have

f∗∇N
XY + h(X,Y )

(∗)
= ∇M

X f∗Y = ∇M
X π∗f̃∗Y

(†)
= π∗∇fM

X f̃∗Y

(∗)
= π∗

(
f̃∗∇N

XY + h̃(X,Y )
)

= f∗∇N
XY + π∗h̃(X,Y ) ;

here the equals signs marked (∗) follow from the Gauss equation, and the equals sign marked

(†) is a consequence of the fact that f̃ is horizontal, see [O’N83], Lemma 7.45(3), p. 212. Thus

we have shown

h(X,Y ) = π∗h̃(X,Y ) .

For (b). If f̃ is totally geodesic, we have h̃ = 0 , wherefrom h = 0 follows by (a). Therefore f

is then also totally geodesic. �

11The attribute “horizontal” here means that ef∗TqN is a subspace of the horizontal space (kerT ef(q)π)⊥ for

every q ∈ N .
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5.7 Remark. In the situation of Lemma 5.6, in fact more can be said about the relation between

f̃ and f . In particular, it can be shown that h̃ takes its values in the π-horizontal subbundle

of TM̃ , and therefore f̃ is actually totally geodesic if and only if f is totally geodesic; see

[Rec85], Theorem 1 and Corollary 1, p. 266f.

5.2 Types (G1, k) and (P2)

5.8 Lemma. Let Ũ be a (k+2)-dimensional CQ-subspace of V , 1 ≤ k < m . Then Q′ := Q∩ [Ũ ]

is a k-dimensional complex quadric in IP(Ũ) = [Ũ ] ⊂ IP(V) , and a totally geodesic, connected,

compact Hermitian submanifold of Q . For any p ∈ Q′ and z ∈ π−1({p}) we have TpQ
′ =

π∗(HzQ∩TzŨ) ; this curvature-invariant subspace of TpQ is of type (G1, k) for k ≥ 2 resp. of

type (P2) for k = 1 .

5.9 Example. Let us denote by Qk and Qm the standard complex quadrics of the respective

dimensions, see Example 1.1. The k-dimensional complex quadric

{ [z1, . . . , zk+2, 0, . . . , 0] ∈ Qm | [z1, . . . , zk+2] ∈ Qk }

is a totally geodesic submanifold of Qm .

Proof of Lemma 5.8. Let A eU be the induced CQ-structure of Ũ . Then we have Q′ = Q(AeU )

and therefore Q′ is a k-dimensional complex quadric in IP(Ũ ) . It follows from results of

Chapters 1 and 3 that the quadric Q′ (with its intrinsic Hermitian structure) is a connected,

compact manifold.

Since Q′ is a Hermitian submanifold of IP(Ũ) , and Ũ is a complex linear subspace of V
and therefore IP(Ũ) = [Ũ ] a Hermitian submanifold of IP(V) , we see that Q′ is a Hermitian

submanifold of IP(V) . Because Q′ is moreover contained in the Hermitian submanifold Q of

IP(V) , we see that Q′ is a Hermitian submanifold of Q .

To show that Q′ is a totally geodesic submanifold of Q we use the well-known theorem that

the connected components of the fixed point set of an isometry on a Riemannian manifold are

regular, totally geodesic submanifolds (see [Kob72], Theorem II.5.1, p. 59).

Let B : V → V be the CQ-automorphism characterized by B|Ũ = ideU and B|Ũ⊥ = −ideU⊥ .

By Proposition 3.2(a), g := B|Q : Q → Q is a holomorphic isometry. If p ∈ Q is given, say

p = π(z) with z ∈ Q̃ , we decompose z as z = z1 + z2 with z1 ∈ Ũ and z2 ∈ Ũ⊥ . We also fix

A ∈ A , then we have

g(p) = p ⇐⇒ ∃λ ∈ S1 : Bz = λz

⇐⇒ ∃λ ∈ S1 : z1 − z2 = λ(z1 + z2)

⇐⇒
(
z2 = 0 or z1 = 0

)

⇐⇒
(
z ∈ Ũ ∩ Q̃ or z ∈ Ũ⊥ ∩ Q̃

)

⇐⇒
(
p ∈ Q(A|Ũ ) or p ∈ Q(A|Ũ⊥)

)
.
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This shows that the connected components of Fix(g) are exactly the disjoint subsets Q(A|Ũ) =

Q′ and Q(A|Ũ⊥) . Therefore Q′ is a totally geodesic submanifold of Q .

Now let p ∈ Q′ and z ∈ π−1({p}) be given. Then we have

TpQ
′ = { v ∈ TpQ | g∗v = v }
= π∗ {w ∈ HzQ |B−→w = −→w }
= π∗ {w ∈ HzQ | −→w ∈ Ũ } = π∗(HzQ ∩ TzŨ) . (5.2)

TzŨ and HzQ are CQ-subspaces of the CQ-space TzV (see Theorem 2.26). Therefore HzQ∩
TzŨ is a CQ-subspace of the CQ-space HzQ . Because π∗|HzQ : HzQ → TpQ is a CQ-

isomorphism, we thus see from Equation (5.2) that TpQ
′ is a CQ-subspace of TpQ , and hence

a curvature-invariant subspace of type (G1, k) resp. (P2) . �

5.10 Proposition. Let p ∈ Q and a curvature-invariant subspace U ⊂ TpQ of type (G1, k) or of

type (P2) be given; in the latter case, we put k := 1 .

Fix z ∈ π−1({p}) arbitrarily. Then12 Ũ := spanA{z} 	
−−−−−−−−−→
(π∗|Hz)

−1(U) is a (k+ 2)-dimensional

CQ-subspace of (V,A) . The complex quadric Q′ := Q ∩ [Ũ ] in IP(Ũ) is a totally geodesic,

connected, compact Hermitian submanifold of Q with p ∈ Q′ and TpQ
′ = U .

Proof. By Theorems 1.16 and 2.26,
−−−−−−−−−→
(π∗|Hz)

−1(U) is a k-dimensional CQ-subspace of V which

is orthogonal to spanA{z} . Also, for a fixed A ∈ A , we have 〈z,Az〉C = 0 and therefore

spanA{z} = spanC{z,Az} is a 2-dimensional CQ-subspace of V . It follows that Ũ is a (k+2)-

dimensional CQ-subspace of V .

Lemma 5.8 now shows that Q′ is a k-dimensional complex quadric, and a totally geodesic,

connected, compact Hermitian submanifold of Q . We have p ∈ Q′ . Also, we have
−−→HzQ ∩

Ũ = (spanA{z})⊥ ∩ Ũ =
−−−−−−−−−→
(π∗|Hz)

−1(U) (see Equation (2.17)) and thus by Lemma 5.8 TpQ
′ =

π∗(HzQ ∩ TzŨ) = U . �

5.3 Types (G2, k1, k2) and (P1, k)

In this section, we abbreviate r := 1/
√

2 and consider the sphere Sr(W ) , where {0} 6= W ⊂ V
is any real linear subspace. Remember that Sr(W ) is connected for dimIRW ≥ 2 , whereas it

consists of exactly two points in the case dimIRW = 1 . In the following constructions, sphere

products Sr(W1) × Sr(W2) play an important role.

5.11 Proposition. Let p ∈ Q and a curvature-invariant subspace U ⊂ TpQ of type (G2, k1, k2) be

given. Thus there exists A′ ∈ A(Q, p) and linear subspaces W1,W2 ⊂ V (A′) of dimension k1

resp. k2 with W1 ⊥W2 so that U = W1 	 JW2 holds.

12Concerning the definition of eU remember that spanA{z} = spanC{z, Az} holds (with A ∈ A ), compare

Definition 2.10(e).
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Let z ∈ π−1({p}) be given and let A ∈ A be the lift of A′ at z (meaning that the conjugation

A|HzQ : HzQ → HzQ is conjugate to A′ under the CQ-isomorphism π∗|HzQ : HzQ → TpQ ,

see Theorem 2.25(b)). Then

Ṽ1 := IR(ReA z) 	
−−−−−−−−−−→
(π∗|Hz)

−1(W1) and Ṽ2 := IR(ImA z) 	
−−−−−−−−−−→
(π∗|Hz)

−1(W2) (5.3)

are orthogonal subspaces of V (A) of real dimension k1 + 1 resp. k2 + 1 and the map

fU : Sr(Ṽ1) × Sr(Ṽ2) → Q, (x, y) 7→ π(x+ Jy)

is a two-fold isometric covering map onto its image M with

∀ (x, y), (x′, y′) ∈ Sr(Ṽ1) × Sr(Ṽ2) :
(
fU(x′, y′) = fU(x, y) ⇐⇒ (x′, y′) = ±(x, y)

)
. (5.4)

M is a totally geodesic, totally real, connected, compact submanifold of Q with p ∈ M and

TpM = U . Because of (5.4), fU gives rise to an isometry f
U

: (Sr(Ṽ1)×Sr(Ṽ2))/{±id} →M .

5.12 Proposition. Let p ∈ Q and a curvature-invariant subspace U ⊂ TpQ of type (P1, k) be

given. Thus there exists A′ ∈ A(Q, p) so that U is a k-dimensional subspace of V (A′) .

Let z ∈ π−1({p}) be given and let A ∈ A be the lift of A′ at z (as above). Then

Ṽ := IR(ReA z) 	
−−−−−−−−−→
(π∗|Hz)

−1(U) (5.5)

is a linear subspace of V (A) of real dimension k + 1 and the map

fU : Sr(Ṽ ) → Q, x 7→ π(x+ J ImA z)

is an isometric embedding; its image M is a totally geodesic, totally real, connected, compact

submanifold of Q with p ∈M and TpM = U .

5.13 Example. For k1, k2 ∈ IN0 with 1 ≤ k1 + k2 ≤ m , the map

Sk1r × Sk2r → Qm,

((x0, . . . , xk1), (y0, . . . , yk2)) 7→ [x0, . . . , xk1 , i · y0, . . . , i · yk2 , 0, . . . , 0]

is an isometric immersion and a two-fold covering map onto its image. The latter is a totally

geodesic submanifold of Qm ; it is of type (G2, k1, k2) (for k1, k2 6= 0 ) resp. of type (P1, k1)

(for k2 = 0 ).

Proof of Propositions 5.11 and 5.12. Let p ∈ Q and a curvature-invariant subspace U ⊂ TpQ

of type (G2, k1, k2) or of type (P1, k) be given; in the latter case, we put k1 := k and k2 := 0 .

Then in either case there exist A′ ∈ A(Q, p) and linear subspaces W1,W2 ⊂ V (A′) of dimension

k1 resp. k2 so that U = W1 	 JW2 and W1 ⊥ W2 holds. Let z ∈ π−1({p}) be given and let

A ∈ A be the lift of A′ at z (Theorem 2.25(b)). Then we define the linear subspaces Ṽ1 and

Ṽ2 of V (A) by Equations (5.3).

Because z ∈ Q̃ is isotropic, we have by Proposition 2.20(b),(c)

‖ReA z‖ = ‖ ImA z‖ = r and ReA z ⊥ ImA z . (5.6)
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For ` ∈ {1, 2} , we put W̃` :=
−−−−−−−−−−→
(π∗|Hz)

−1(W`) , then we have

W̃` ⊂
−−→HzQ (5.7)

and consequently by Theorem 2.26

ReA z, ImA z ⊥ W̃1, W̃2 , (5.8)

and because of Theorem 2.25(b), W` ⊂ V (A′) implies

W̃` ⊂ V (A) . (5.9)

Because of W1 ⊥W2 we also have

W̃1 ⊥ W̃2 . (5.10)

(5.8) shows that the sums in the definition (5.3) of Ṽ` are indeed orthogonally direct, therefore

we have dimIR Ṽ` = k` + 1 . (5.8) and (5.10) show

Ṽ1 ⊥ Ṽ2 , (5.11)

and (5.9) shows

Ṽ` ⊂ V (A) . (5.12)

We now consider the map

f̃ : Sr(Ṽ1) × Sr(Ṽ2) → Q̃, (x, y) 7→ x+ Jy ;

f̃ indeed maps into Q̃ : For any (x, y) ∈ Sr(Ṽ1) × Sr(Ṽ2) =: N , we have ‖x‖ = ‖y‖ = r and

x ⊥ y , whence f̃(x, y) ∈ Q̃ follows by Proposition 2.23(b).

It should be kept in mind that we have

fU = π ◦ f̃ in the case of Proposition 5.11 (5.13)

and ∀x ∈ S(Ṽ ) : fU(x) = π(f̃(x, ImA z)) in the case of Proposition 5.12. (5.14)

We next show that f̃ is an isometric embedding. Let (x, y) ∈ N and u ∼= (v, w) ∈ T(x,y)N be

given; here ∼= denotes the canonical isomorphy T(x,y)N ∼= TxSr(Ṽ1) ⊕ TySr(Ṽ2) . Then we have

−−−−−−→
T(x,y)f̃(u) = −→v + J−→w (5.15)

and consequently

〈T(x,y)f̃(u), T(x,y)f̃(u)〉 = 〈v + Jw, v + Jw〉 = 〈v, v〉 + 〈w,w〉 = 〈u, u〉 .

The latter equation shows that f̃ is an isometric immersion into the regular submanifold Q̃ of

V . Furthermore (5.15) implies f̃∗u ∈ H ef(x,y)
Q , see Equation (2.18) in Theorem 2.26, thus the

map f̃ is horizontal.
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Note that we have (ReA z, ImA z) ∈ N by (5.6) and f̃(ReA z, ImA z) = z , also we have

−−−−−−−−−−−−→
f̃∗T(ReA z,ImA z)N

(5.15)
= { v + Jw | v ∈ TReA zṼ1, w ∈ TImA zṼ2,

−→v ⊥ ReA z,
−→w ⊥ ImA z }

= W̃1 	 JW̃2 =
−−−−−−−−−→
(π∗|Hz)

−1(U) . (5.16)

Because f̃ is a horizontal isometric immersion, f := π ◦ f̃ is an isometric immersion by

Lemma 5.6(a); moreover, we have for any (x, y), (x′, y′) ∈ N

f(x′, y′) = f(x, y) ⇐⇒ ∃λ ∈ S1 : x′ + Jy′ = λ · (x+ Jy)

⇐⇒ x′ + Jy′ = ±(x+ Jy) (note that x, y, x′, y′ ∈ V (A) holds)

⇐⇒ (x′, y′) = ±(x, y) . (5.17)

This shows that the fibres of f are exactly the fibres of the two-fold covering map τ : Sr(Ṽ1)×
Sr(Ṽ2) → (Sr(Ṽ1) × Sr(Ṽ2))/{±id} . Therefore f gives rise to an injective isometric immersion

f : (Sr(Ṽ1)× Sr(Ṽ2))/{±id} → Q so that f ◦ τ = f holds. Because (Sr(Ṽ1)× Sr(Ṽ2))/{±id} is

compact, f is in fact an isometric embedding, and therefore M := f((Sr(Ṽ1)×Sr(Ṽ2))/{±id}) =

f(Sr(Ṽ1) × Sr(Ṽ2)) is a compact, and hence regular, submanifold of Q . It also follows that f

is a two-fold covering map onto M . M is connected along with (Sr(Ṽ1) × Sr(Ṽ2))/{±id} .

Because of z ∈ f̃(N) and Equation (5.16), we have

p ∈M and TpM = U .

In order to show that M is a totally geodesic submanifold of Q , it suffices to show that the

isometric immersion f is totally geodesic; because of Lemma 5.6(b), for this it is in turn sufficient

to show that f̃ is totally geodesic.

Because f̃ is an injective immersion and N is compact, f̃ is an embedding, and hence M̃ :=

f̃(N) is a regular submanifold of Q . To prove that the isometric immersion f̃ is totally

geodesic, it suffices to show that the submanifold M̃ is totally geodesic, and for the proof of

this fact we again use the theorem that the connected components of the common fixed point

set of a set of isometries are totally geodesic submanifolds ([Kob72], Theorem II.5.1, p. 59):

Ỹ` := Ṽ`	JṼ` is a CQ-subspace of V for ` ∈ {1, 2} . Let B1 : V → V be the CQ-automorphism

characterized by

B1|(Ỹ1 	 Ỹ2) = ideY1	eY2
and B1|(Ỹ1 	 Ỹ2)

⊥ = −id
(eY1	eY2)⊥

and let B2 : V → V be the CQ-anti-automorphism characterized by

B2|Ỹ1 = A|Ỹ1 and B2|Ỹ ⊥
1 = −A|Ỹ ⊥

1 .

Then g1 := B1|Q̃ and g2 := B2|Q̃ are isometries of Q̃ .

Let z′ ∈ Q̃ be given; we represent z ′ in the form z′ = z′Y + z′⊥ with z′Y ∈ Ỹ1 	 Ỹ2 and

z′⊥ ∈ (Ỹ1 	 Ỹ2)
⊥ . Then we have

g1(z
′) = z′ ⇐⇒ z′Y − z′⊥ = z′Y + z′⊥ ⇐⇒ z′⊥ = 0 ⇐⇒ z′ ∈ Ỹ1 	 Ỹ2 ,
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and if g1(z
′) = z′ holds, say for z′ = z′1 + z′2 with z′` ∈ Ỹ` , we have

g2(z
′) = z′ ⇐⇒ A(z′1 − z′2) = z′1 + z′2 ⇐⇒

(
z′1 ∈ V (A)∩ Ỹ1 = Ṽ1 and z′2 ∈ JV (A)∩ Ỹ2 = JṼ2

)
.

Therefore we have

Fix({g1, g2}) = { z′1 + z′2 | z′1 ∈ Ṽ1, z
′
2 ∈ JṼ2, z

′
1 + z′2 ∈ Q̃ }

= {x+ Jy |x ∈ Ṽ1, y ∈ Ṽ2, x+ Jy ∈ Q̃ }
= {x+ Jy |x ∈ Sr(Ṽ1), y ∈ Sr(Ṽ2) } = M̃ .

It follows by [Kob72], Theorem II.5.1, p. 59 that M̃ is a totally geodesic submanifold of Q̃ ,

and therefore M is a totally geodesic submanifold of Q .

Because TpM = U is a totally real subspace of TpQ , Lemma 5.4 shows that M is a totally

real submanifold of Q .

In the situation of Proposition 5.11 we have by (5.13) fU = f and f
U

= f ; therefore all

statements of Proposition 5.11 have been shown above.

In the situation of Proposition 5.12, we have Sr(Ṽ2) = {± ImA z} , therefore N has exactly two

connected components, and we have fU = f ◦ ι with the isometric embedding

ι : Sr(Ṽ ) → N, x 7→ (x, ImA z)

onto one of the connected components of N . Because of (5.17), we now see that the images of

fU and f coincide, therefore all statements of Proposition 5.12 have been shown above, with

the exception of the fact that the isometric immersion fU is an embedding. For the proof of this

fact, we note that (5.17) also shows that fU is injective. Because fU is therefore an injective

immersion defined on the compact manifold Sr(Ṽ ) , it is indeed an embedding. �

Among the totally geodesic submanifolds of a symmetric space, the maximal tori (i.e. the totally

geodesic submanifolds whose tangent spaces are maximal flat subspaces) are of particular inter-

est, for example because every geodesic runs in a maximal torus. In a CQ-space, the maximal flat

subspaces are exactly the curvature-invariant subspaces of type (G2, 1, 1) (see Theorem 2.54),

and therefore the maximal tori of a complex quadric are the totally geodesic submanifolds of

type (G2, 1, 1) .

In the following proposition, we give a closer description of the geometry of these maximal tori.

In particular, we describe a lattice Γ ⊂ C (i.e. a discrete subgroup Γ of the group (C,+) ) so

that the maximal tori of Q are isometric to C/Γ .

5.14 Proposition. Let p ∈ Q and a curvature-invariant subspace U ⊂ TpQ of type (G2, 1, 1) be

given; we let M be the maximal torus of Q with p ∈M and TpM = U .

There exists A′ ∈ A(Q, p) and an orthonormal system (vx, vy) in V (A′) so that U = IRvx ⊕
IRJvy holds. We fix z ∈ π−1({p}) , denote by A ∈ A the lift of A′ at z (see Theorem 2.25(b))
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and put x :=
√

2 ReA z , y :=
√

2 ImA z , ṽx :=
−−−−−−−−−−→
(π∗|Hz)

−1(vx) , ṽy :=
−−−−−−−−−−→
(π∗|Hz)

−1(vy) , r :=

1/
√

2 . Then we consider the normal geodesics

γ̃1 : IR → Sr(V), t 7→ r cos( tr ) · x+ r sin( tr ) · ṽx
and γ̃2 : IR → Sr(V), t 7→ r cos( tr ) · y + r sin( tr ) · ṽy

and the map

f : C → Q, t+ is 7→ π( γ̃1(t) + Jγ̃2(s) ) .

f is an isometric covering map onto M ; its deck transformation group is given by the transla-

tions in C by the elements of the lattice

Γ := ZZ
π√
2
(1 + i) ⊕ ZZ

π√
2
(1 − i) . (5.18)

It follows that M is isometric to the torus C/Γ ∼= S1
1/2 × S1

1/2 .

Moreover, we have f(0) = p and (identifying T0C with C )

∀τ, σ ∈ IR : T0f(τ + iσ) = τ vx + σ Jvy . (5.19)

Proof. We put

Ṽ1 := IRx⊕ IRṽx and Ṽ2 := IRy ⊕ IRṽy

and consider, as in Proposition 5.11, the isometric embedding

f̃U : Sr(Ṽ1) × Sr(Ṽ2) → Q̃, (x′, y′) 7→ x′ + Jy′

onto M̃ := f̃U(Sr(Ṽ1) × Sr(Ṽ2)) and the two-fold isometric covering map

fU := π ◦ f̃U : Sr(Ṽ1) × Sr(Ṽ2) → Q

onto M also described in Proposition 5.11.

The normal geodesic γ̃k : IR → Sr(Ṽk) is periodic with period 2rπ and an isometric covering

map of the circle Sr(Ṽk) , and hence

χ : C → Sr(Ṽ1) × Sr(Ṽ2), t+ is 7→ (γ̃1(t), γ̃2(s))

is an isometric covering map whose deck transformation group is given by the translations in C

by the elements of the lattice

Γ̃ := ZZ 2rπ ⊕ ZZ 2rπ i .

Therefore also

f̃ := f̃U ◦ χ : C → Q̃

is an isometric covering map onto M̃ with the same deck transformation group.

Because both f̃ and π|M̃ : M̃ → M are isometric covering maps (as (5.4) shows, the latter

is a two-fold covering map whose fibres are of the form {±z ′} with z′ ∈ M̃ ), we see that also
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f = (π|M̃) ◦ f̃ is an isometric covering map C → M . We obviously have f(0) = p , and

Equation (5.19) follows easily from the facts γ̃ ′1(0) = ṽx and γ̃′2(0) = ṽy .

It remains to show that the deck transformation group of f is indeed as given in Equation (5.18).

For this we note that we have

f−1({p}) = ((π|M̃ ) ◦ f̃)−1({p}) = f̃−1((π|M̃ )−1({p})) = f̃−1({z}) ∪̇ f̃−1({−z})
= Γ̃ ∪̇ (w1 + Γ̃ ) =: Γ1

with w1 := rπ(1 + i) ; for the last equals sign note that f̃(0) = z and f̃(rπ+ rπ i) = −z holds.

In the following diagram we depict the lattices Γ̃ and Γ1 , there the elements of Γ̃ are marked

by e and the elements of Γ1 are marked by r :

e e e e e

e e e e e

e e e e e

e e e e e

e e e e e

r r r r r

r r r r r

r r r r r

r r r r r

r r r r r

r r r r

r r r r

r r r r

r r r r

0

w1

w2

with w2 := w1 − 2rπi = rπ(1 − i) .

This diagram shows that Γ1 = ZZw1 ⊕ ZZw2 = Γ holds, and therefore the deck transformation

group of f is indeed given by the translations by the elements of Γ . �

5.4 Types (Geo, t) : Geodesics in Q

The totally geodesic submanifolds of Q of type (Geo, t) are exactly the images of normal

geodesics γ : IR → Q whose tangent vector γ̇(s) has the A(Q, γ(s))-angle t for some (and then

for every) s ∈ IR . To describe these submanifolds of Q it therefore suffices to give a description

of the geodesics of Q .

Because every geodesic of Q runs in a maximal torus, we can combine the well-known facts

about geodesics on a flat, 2-dimensional torus with Proposition 5.14 to obtain information on

the geodesics of Q .

5.15 Proposition. Let p ∈ Q , v ∈ S(TpQ) and z ∈ π−1({p}) be given.

Let A′ ∈ A(Q, p) be adapted to v in the sense of Theorem 2.28. Then we have the canonical

representation

{
v = cos(ϕ) · vx + sin(ϕ) · Jvy
with ϕ := ϕ(v) ∈ [0, π4 ] , vx, vy ∈ S(V (A′)) and vx ⊥ vy .

(5.20)
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We let A ∈ A be the lift of A′ at z (Theorem 2.25(b)) and put x := ReA z , y := ImA z , ṽx :=−−−−−−−−−−→
(π∗|Hz)

−1(vx) and ṽy :=
−−−−−−−−−−→
(π∗|Hz)

−1(vy) . We consider the isometric covering map f : C → Q

onto a maximal torus of Q from Proposition 5.14 in this situation.

Then the curve

γv : IR → C, t 7→ f(eiϕ · t)

is the maximal geodesic of Q with γv(0) = p and γ̇v(0) = v .

Proof. Let M = f(C) be the maximal torus of Q with p ∈ M and TpM = IRvx ⊕ IRJvy . It

is clear that

δ : IR → C, t 7→ eiϕ · t

is a geodesic of C ; because f : C → M is an isometric covering map onto the totally geodesic

submanifold M of Q , it follows that γv = f ◦ δ is a geodesic of Q .

Moreover we have γv(0) = f(0) = p and by Equation (5.19)

γ̇v(0) = f∗(δ̇(0)) = f∗(e
iϕ) = cos(ϕ)vx + sin(ϕ)Jvy

(5.20)
= v ;

in this calculation we again identified T0C with C . �

5.16 Remark. If we have v ∈ S(TpQ) with ϕ(v) = π
4 , then the geodesic γ̂ : IR → IP(V) of IP(V)

with ˙̂γ(0) = v satisfies γ̂(IR) ⊂ Q , and therefore γ̂ also is a geodesic of Q .

Proof of Remark 5.16. Fix z ∈ π−1({p}) and A ∈ A , and let w ∈ HzQ be the π-horizontal

lift of v at z . Because of z ∈ Q̃ and ϕ(v) = π
4 we have

〈z,Az〉C = 〈−→w ,A−→w 〉C = 0 (5.21)

and because of −→w ,A−→w ∈ −−→HzQ we have by Proposition 1.13(b)

−→w ,A−→w ⊥ z,Az . (5.22)

For t ∈ IR we have γ̂(t) = π(γ̃(t)) with

γ̃(t) = cos(t) z + sin(t)−→w .

By Equations (5.22) and (5.21),

〈γ̃(t), A(γ̃(t))〉C = cos(t)2 · 〈z,Az〉C + sin(t)2 · 〈−→w ,A−→w 〉C = 0

holds; this shows that we have γ̃(IR) ⊂ Q̃ and therefore γ̂(IR) ⊂ Q . �

Our next aim is to calculate the length of closed geodesics in Q . Let us first recapitulate the

corresponding well-known result for 2-dimensional tori corresponding to an orthogonal lattice:
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5.17 Proposition. Let (w1, w2) be an orthonormal basis of the real-2-dimensional euclidean

space C , ` ∈ IR+ and Γ := ZZ `w1⊕ZZ `w2 be the lattice in C generated by `w1 and `w2 . Then

we consider the flat torus T := C/Γ along with the canonical projection ϑ : C → T, z 7→ z+Γ .

The diameter of T is `/
√

2 .

Further let z ∈ C be given and put p := ϑ(z) ∈ T . We identify TpT with TzC via the linear

isomorphism Tzϑ , so that −→v ∈ C is well-defined for v ∈ TpT .

Now let v ∈ S(TpT) be given and let γ : IR → T be the maximal geodesic of T with γ(0) = p

and γ̇(0) = v . We denote by α ∈ [0, π] the (non-oriented) angle between −→v and w1 and

suppose that α < π
2 holds.13

(a) If α = 0 holds, then γ is closed and its minimal period is ` .

(b) If α 6= 0 holds and tan(α) is rational, say tan(α) = k1
k2

where k1, k2 ∈ IN are relatively

prime, then γ is also closed and its minimal period is ` ·
√
k2

1 + k2
2 .

(c) If tan(α) is irrational, then γ is injective and γ(IR) is dense in T .

5.18 Proposition. Let p ∈ Q and v ∈ S(TpQ) be given. As in Proposition 5.15, we denote by

γv : IR → Q the maximal geodesic of Q with γv(0) = p and γ̇v(0) = v .

(a) If tanϕ(v) is rational, then γv is periodic.

(i) If ϕ(v) = 0 holds, then the minimal period of γv is L :=
√

2 · π .

(ii) If ϕ(v) > 0 and tanϕ(v) = k1
k2

holds with k1, k2 ∈ IN relatively prime, and k1 and

k2 are both odd, then the minimal period of γv is

L :=
π√
2
·
√
k2

1 + k2
2 .

(iii) If ϕ(v) > 0 and tanϕ(v) = k1
k2

holds with k1, k2 ∈ IN relatively prime, and one of

the numbers k1 and k2 is even, then the minimal period of γv is

L :=
√

2 · π ·
√
k2

1 + k2
2 .

(b) If tanϕ(v) is irrational, then γv is injective. Let us denote by U a 2-flat of TpQ con-

taining v , and by M the maximal torus of Q with p ∈M and TpM = U . Then γv(IR)

is dense in M .

5.19 Remark. In the cases of Proposition 5.18 where γv is periodic, say with minimal period L ,

we know from the general theory of symmetric spaces that γv|[0, L[ is injective.

13The case α = π
2

can be reduced to the case α = 0 by replacing (w1, w2) with (±w2, w1) . The case α > π
2

can be reduced to the case α < π
2

by replacing w1 with −w1 .
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Proof of Proposition 5.18. We let A ∈ A(Q, p) be adapted to v (see Theorem 2.28) and consider

a canonical representation

v = cos(ϕ) · vx + sin(ϕ) · Jvy
of v , i.e. we have ϕ := ϕ(v) and (vx, vy) is an orthonormal system in V (A) . Then U :=

IRvx⊕ IRJvy is a 2-flat of TpQ with v ∈ U . Let us denote by M the maximal torus of Q with

p ∈ M and TpM = U . Then the geodesic γ := γv runs entirely in M . Therefore the desired

results can be obtained by application of Proposition 5.17.

As we saw in Proposition 5.14, M is isometric to the flat torus C/Γ , where the lattice Γ :=

ZZ `w1 ⊕ ZZ `w2 is given by ` := π and the orthonormal IR-basis (w1, w2) of C with w1 := 1+i√
2

and w2 := 1−i√
2

. More specifically, the isometric covering map f : C/Γ → M described in that

proposition gives rise to an isometry f : C/Γ →M so that the following diagram commutes:

C
f

//

��

M

C/Γ

f

==zzzzzzzz

.

As a consequence of Equation (5.19), f satisfies

f∗(w1) = 1√
2
· (vx + Jvy) ;

here we again identify T0(C/Γ) ∼= T0C ∼= C .

As Proposition 5.17 shows, the behaviour of the geodesic γ is controlled by the non-oriented

angle α between ṽ :=
−−−−−−→
(f∗)

−1(v) and w1 . As f is an isometry, the angle between v and f ∗w1

is also equal to α , and therefore we have α = π
4 − ϕ , see the following diagram:

-

6

������1

�
�

�
��

.

................

................
.
..........
..........
..........
.........

vx

Jvy

v

f∗(w1)

ϕ
α

Because of this relation, we have

tan(α) =
1 − tan(ϕ)

1 + tan(ϕ)
. (5.23)

For (a). If tan(ϕ) is rational, then Equation (5.23) shows that tan(α) is also rational and

therefore Proposition 5.17 shows that the geodesic γ is closed.

For (a)(i). If ϕ = 0 and hence tan(α) = 0 holds, then we have tan(α) = 1 by Equation (5.23),

and therefore the minimal period of γ is ` ·
√

12 + 12 =
√

2 · π by Proposition 5.17.

For (a)(ii),(iii). Suppose that ϕ > 0 holds and that tan(ϕ) is rational, say tan(ϕ) = k1
k2

, where

k1, k2 ∈ IN are relatively prime and k1 ≤ k2 holds. In the case k1 = k2 = 1 we have tan(α) = 0

by Equation (5.23) and therefore the minimal period of γ is π by Proposition 5.17(a). Otherwise
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we have k1 < k2 and we obtain from Equation (5.23)

tan(α) =
1 − k1

k2

1 + k1
k2

=
k2 − k1

k2 + k1
. (5.24)

Because k1 and k2 are relatively prime, the greatest common divisor of k2 − k1 and k2 + k1

is at most 2 . (Any common divisor of k2 − k1 and k2 + k1 also divides 2k2 and 2k1 .)

Thus we see that if both k1 and k2 are odd (hence k2±k1 is even), the greatest common divisor

of k2−k1 and k2 +k1 is 2 , and therefore we obtain by Proposition 5.17(b) and Equation (5.24)

for the minimal period of γ

` ·
√(

k2−k1
2

)2
+
(
k2+k1

2

)2
= π√

2
·
√
k2

2 + k2
1 .

On the other hand, if either k1 or k2 is even (then the other of these two numbers is necessarily

odd, and hence k2 ± k1 is odd), then k2 − k1 and k2 + k1 are relatively prime, and therefore

we obtain by Proposition 5.17(b) and Equation (5.24) for the minimal period of γ

` ·
√

(k2 − k1)2 + (k2 + k1)2 =
√

2 π ·
√
k2

2 + k2
1 .

For (b). Suppose that tan(ϕ) is irrational. Then tan(α) also is irrational. (It follows from

Equation (5.23) that also tan(ϕ) = 1−tan(α)
1+tan(α) holds, and therefore the rationality of tan(α) would

imply the rationality of tan(ϕ) .) Therefore the statement follows from Proposition 5.17(c). �

5.20 Proposition. We denote by d : Q × Q → IR the geodesic distance function of Q and by

A : Q→ Q the antipode map of Q , see Remark 3.3. For any p, q ∈ Q we have

(a) d(p, q) ≤ π√
2
.

(b) d(p, q) = π√
2

⇐⇒ q = A(p) .

In particular, the diameter of Q is equal to π√
2
. The preceding statements also justify the name

“antipode map” for A .

Proof. For (a). Let p, q ∈ Q be given. By the Theorem of Hopf/Rinow (see [Lan99],

Theorem VIII.6.6, p. 225) there exists a normal geodesic γ : IR → Q of Q with γ(0) = p and

γ(t0) = q , where t0 := d(p, q) . γ runs in a maximal torus M of Q , and therefore we have

t0 ≤ diam(M) . By Proposition 5.14, M is isometric to S1
1/2 × S1

1/2 , whence it follows that

diam(M) = π√
2

holds. Thus, we have shown d(p, q) ≤ π√
2
.

For (b). In the situation discussed in the proof of (a), we now suppose that d(p, q) = π√
2

holds.

Note that we have p, q ∈M . We consider the isometry f : C/Γ →M induced by the isometric

covering map f : C →M from Proposition 5.14(b); here Γ is defined as in that proposition, and
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we use the point p also for the construction of Proposition 5.14, so that we have f(0 + Γ) = p .

The only point in C/Γ which has distance π√
2

to 0 + Γ = f−1(p) is π√
2

+ Γ ; because f is an

isometry, it follows that q = f( π√
2

+ Γ) = A(p) holds.

Conversely, if we have q = A(p) in the situation of the proof of (a), then f−1(p) = 0 + Γ and

f−1(q) = π√
2

+ Γ have distance π√
2

in M and therefore also in Q . �

5.5 Types (I1, k) and (I2, k)

5.21 Proposition. Let p ∈ Q , a curvature-invariant subspace U ⊂ TpQ and z ∈ π−1({p}) be

given.

(a) If U is of type (I1, k) , then Ṽ := Cz 	
−−−−−−−−−→
(π∗|Hz)

−1(U) is a (k + 1)-dimensional complex

isotropic subspace of V . The k-dimensional complex projective subspace M := [Ṽ ] of

IP(V) (equipped with a Hermitian metric of constant holomorphic sectional curvature 4 ) is

contained in Q and therefore a totally geodesic, connected, compact Hermitian submanifold

of Q . Also p ∈M and TpM = U holds.

(b) If U is of type (I2, k) , then Ṽ := IRz	
−−−−−−−−−→
(π∗|Hz)

−1(U) is a (k+1)-dimensional totally real

isotropic subspace of V . M := [Ṽ ] := {π(v) | v ∈ S(Ṽ ) } is a totally geodesic, totally real

submanifold of IP(V) which is isometric to IRPk (equipped with a Riemannian metric

of constant sectional curvature 1 ) and which is contained in Q ; hence it is a totally

geodesic, connected, compact totally real Riemannian submanifold of Q . Also p ∈M and

TpM = U holds.

5.22 Example. Let k ∈ IN with k ≤ m
2 be given. We regard Cm+2 as a CQ-space in the usual way

(Example 2.6) and denote the standard basis of Cm+2 by (e1, . . . , em+2) .

(a) The complex (k + 1)-dimensional linear subspace

Ṽ1 := spanC{e1 + Je2, e3 + Je4, . . . , e2k+1 + Je2k+2}

of Cm+2 is isotropic; therefore [Ṽ1] is a totally geodesic Hermitian submanifold of the

standard complex quadric Qm .

(b) The totally real (k + 1)-dimensional linear subspace

Ṽ2 := spanIR{e1 + Je2, e3 + Je4, . . . , e2k+1 + Je2k+2} ,

of Cm+2 is isotropic; therefore [Ṽ2] is a totally geodesic, totally real submanifold of Qm .
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Proof of Proposition 5.21. We fix A ∈ A .

For (a). By Proposition 1.13(b), Cz is orthogonal to
−−−−−−−−−→
(π∗|Hz)

−1(U) , therefore the sum in the

definition of Ṽ is indeed orthogonally direct and we have dim Ṽ = k + 1 . For any v ∈ Ṽ , say

v = λz + u with λ ∈ C and u ∈
−−−−−−−−−→
(π∗|Hz)

−1(U) , we have

〈v,Av〉C = λ2〈z,Az〉C + 2λ〈z,Au〉C + 〈u,Au〉C .

We have 〈z,Az〉C = 0 because of z ∈ Q̃ , 〈z,Au〉C = 0 by Proposition 1.13(b), and 〈u,Au〉C = 0

because U and therefore also
−−−−−−−−−→
(π∗|Hz)

−1(U) is an isotropic subspace. Thus, we see 〈v,Av〉C = 0 .

This shows that Ṽ is an A-isotropic subspace of V , and therefore we have M := [Ṽ ] ⊂ Q .

Obviously M is a connected, compact (and hence regular), totally geodesic submanifold of

IP(V) ; because of M ⊂ Q it follows from Lemma 5.5 that M is a totally geodesic submanifold

of Q . Because the Riemannian metric and the complex structure of both Q and M are

inherited from IP(V) , we see that M is a Hermitian submanifold of Q . Finally, we have

z ∈ Ṽ , hence p ∈M , and

TpM = π∗TzS(Ṽ ) = π∗
(
(π∗|Hz)

−1(U)
)

= U .

For (b). U ′ := U 	 JU is a complex-k-dimensional subspace of TpQ , which is isotropic

by Proposition 2.20(d) and therefore a curvature-invariant subspace of type (I1, k) . By (a),

Ṽ ′ := Cz 	 (π∗|Hz)
−1(U) is a (k + 1)-dimensional complex isotropic subspace of V , and the

k-dimensional complex projective subspace M ′ := [Ṽ ′] is a totally geodesic, Hermitian sub-

manifold of Q .

Ṽ is a maximal totally real subspace of Ṽ ′ , therefore M = [Ṽ ] is a totally real, totally geodesic

submanifold of the complex projective space [Ṽ ′] , and hence of Q . Clearly, M is connected

and compact, and we have p ∈M and TpM = U . �

In the case m = 2 , there exists a pair of foliations of Q by totally geodesic submanifolds of type

(I1, 1) , which intersect orthogonally at every point of Q , see also [Rec95], Remark 3. These

foliations are the image under the Segre embedding f : IP1 × IP1 → Q (see Section 3.4) of the

two foliations of IP1 × IP1 induced by the product structure. However, the foliations on Q can

also be constructed without use of the Segre embedding via the following theorem.

5.23 Theorem. Let (M,ϕ, p0, σ) be a Riemannian symmetric G-space and Gp0 the isotropy group

of the action ϕ : G×M →M at p0 . Suppose that a linear subspace U ⊂ Tp0M with

∀g ∈ Gp0 : (ϕg)∗U = U (5.25)

is given. Then there exists one and only one vector subbundle E ⊂ TM so that

Ep0 = U and ∀g ∈ G, p ∈M : Eϕg(p) = (ϕg)∗Ep (5.26)

holds. E is a parallel subbundle of TM and therefore induces a foliation of M .
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The proof of this theorem is given below. — To obtain the mentioned foliations on the 2-

dimensional quadric Q , we fix p0 ∈ Q . The CQ-space Tp0Q contains exactly two complex

1-dimensional, isotropic subspaces U1 and U2 , as was noted in Remark 2.40. As we already

saw there, U1 and U2 are invariant under Aut(A(Q, p0))0 and therefore under the isotropy

action (I(Q)0)p0 × Tp0Q→ Tp0Q, (f, v) 7→ f∗v (see Proposition 3.9(b)). By Theorem 5.23, U1

and U2 therefore induce two parallel subbundles E1 and E2 of TQ ; because the Riemannian

metric of Q is parallel, Tp0Q = U1 	 U2 implies TQ = E1 	 E2 . Hence the foliations induced

by E1 and E2 intersect orthogonally at every point of Q .

We also note that because Q is simply connected and complete, the de Rham decomposition

theorem shows anew that there exists an isometry f : IP1 × IP1 → Q such that the leaves of the

foliations induced by E1 and E2 are (f({p} × IP1))p∈IP1 resp. (f(IP1 × {p}))p∈IP1 .

Proof of Theorem 5.23. For any g1, g2 ∈ G with ϕg1(p0) = ϕg2(p0) =: p , we have g−1
2 ·g1 ∈ Gp0

and hence

(ϕg1)∗U = (ϕg2 ◦ ϕg−1
2 ·g1)∗U = (ϕg2)∗(ϕg−1

2 ·g1)∗U
(5.25)
= (ϕg2)∗U .

Therefore E can be consistently defined by

∀g ∈ G : Eϕg(p0) := (ϕg)∗U . (5.27)

With this choice of E , (5.26) is satisfied: We have Ep0 = (ϕe)∗U = U (where e denotes

the neutral element of G ); also if g ∈ G and p ∈ M are given, there exists g0 ∈ G with

ϕg0(p0) = p , whence we obtain

Eϕg(p) = Eϕg·g0 (p0)
(5.27)
= (ϕg·g0)∗U = (ϕg)∗(ϕg0)∗U

(5.27)
= (ϕg)∗Eϕg0 (p0) = (ϕg)∗Ep .

E is determined uniquely by (5.26) because G acts transitively on M .

Let us now consider the canonical splitting g = k ⊕ m of the Lie algebra g of G induced by

the symmetric structure of M and the canonical isomorphism τ : m → Tp0M, X 7→ (ϕp0)∗Xe .

We fix a basis (v1, . . . , vk) of Ep0 = U , and consider for j ∈ {1, . . . , k} the left-invariant vector

field Xj := τ−1(vj) ∈ m and the vector field

Yj :=
(
g 7→ (ϕp0)∗(Xj)g

)
∈ Xϕp0 (M) .

Let us denote for any g ∈ G by Lg : G→ G the left translation with g . Then we have

ϕp0 ◦ Lg = ϕg ◦ ϕp0 (5.28)

and therefore

(Yj)g = (ϕp0)∗(Xj)g = (ϕp0)∗(Lg)∗(Xj)e
(5.28)
= (ϕg)∗(ϕ

p0)∗(Xj)e = (ϕg)∗τ(Xj) = (ϕg)∗vj .

Because of Equation (5.26) it follows that ((Y1)g, . . . , (Yk)g) is a basis of Eϕg(p0) for every

g ∈ G . Thus, for every local section % of the fibre bundle ϕp0 : G→M , (Y1 ◦ %, . . . , Yk ◦ %) is

a local basis field of E . Therefore E is a differentiable vector subbundle of TM .

Next, we prove that E is parallel. For this we first note that the Levi-Civita covariant derivative

∇ of the Riemannian symmetric space M coincides with the canonical covariant derivative of
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the second kind in the sense of Nomizu of M regarded as a naturally reductive homogeneous

space (see Appendices A.1 and A.2) and therefore satisfies

∀X,Z ∈ m : ∇Z((ϕp0)∗X) ≡ 0 . (5.29)

Also, it can be shown that the horizontal structure H on the principal fibre bundle ϕp0 : G→M

characterized by

∀g ∈ G : Hg = {Xg |X ∈ m }
is a Gp0 -invariant connection in the sense of Ehresmann, meaning that every curve in M can

be globally lifted horizontally with respect to H .

Now, let a curve α : I → M be given, and let α̃ : I → G be an H-horizontal lift of α in the

bundle ϕp0 : G→M . Then we have for every j ∈ {1, . . . , k} : Yj ◦ α̃ ∈ Xα(M) and

∇∂(Yj ◦ α̃) = ∇eα∗∂Yj = ∇eα∗∂(ϕ
p0)∗Xj = 0 ,

where the last equality is justified by Equation (5.29) and the H-horizontality of α̃ . Because

(Y1 ◦ α̃, . . . , Yk ◦ α̃) is a basis field of E along α , this shows that E is invariant under parallel

displacement along α .

Now let X,Y ∈ Γ(E) be given. Because ∇ is torsion-free, we have

[X,Y ] = ∇XY −∇YX ;

because E is parallel, it follows that [X,Y ] ∈ Γ(E) holds. Thus, E is involutive. By the

global version of the theorem of Frobenius, there exists a foliation of M whose leaves are

integral manifolds of E . �

5.6 Type (G3)

5.24 Proposition. Let p ∈ Q and a curvature-invariant subspace U ⊂ TpQ of type (G3) be given.

Then U is contained in a 2-dimensional CQ-subspace U ′ ⊂ TpQ ; except for the case (m = 2,

U ′ = TpQ) , the subspace U ′ of TpQ is curvature-invariant of type (G1, 2) . We let Q′ be the

connected, complete, totally geodesic submanifold of Q with p ∈ Q′ and TpQ
′ = U ′ ; Q′ is a

2-dimensional complex quadric (see Proposition 5.10).

Then there exists a holomorphic isometry f : IP1 × IP1 → Q′ such that the connected, compact,

totally geodesic Riemannian submanifold M := f(IP1 × IRP1) of Q satisfies p ∈ M and

TpM = U .

More specifically, if W is a 2-dimensional unitary space, then f can be chosen conjugate to

the Segre embedding IP(W ) × IP(W ) → Q(AEnd(W )) described in Section 3.4 under suitable

holomorphic isometries IP1 × IP1 → IP(W ) × IP(W ) and Q′ → Q(AEnd(W )) .

Proof. By definition of the type (G3) there exist A ∈ A(Q, p) and an orthonormal system

(x, y) in V (A) so that

U = C(x− Jy) 	 IR (x+ Jy)
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holds. U is contained in the 2-dimensional CQ-subspace U ′ := Cx	 Cy of TpQ . U ′ contains

exactly two complex-1-dimensional, isotropic subspaces, namely

C (x+ Jy) and C (x− Jy)

(see Remark 2.40). We let Q′ be the connected, complete, totally geodesic submanifold of Q

with p ∈ Q′ and TpQ
′ = U ′ ; Q′ is a 2-dimensional complex quadric by Proposition 5.10.

We now let W be a 2-dimensional unitary space. We regard End(W ) as a CQ-space with the

CQ-structure which was denoted by A in Section 3.4 and which we now denote by AEnd(W ) ,

and consider the Segre embedding f0 : IP(W ) × IP(W ) → IP(End(W )) also described in

Section 3.4, which in fact is an isometry onto Q(AEnd(W )) . We fix q ∈ IP(W ) . Then

N := f0(IP(W )×{q}) is a totally geodesic, complex-1-dimensional submanifold of Q(AEnd(W ))

of constant holomorphic sectional curvature 4 with p0 := f0(q, q) ∈ N . It follows that

Y1 := (f0)∗T(q,q)(IP(W ) × {q}) = Tp0N is a complex-1-dimensional, curvature-invariant sub-

space of the CQ-space Tp0Q(AEnd(W )) . By Theorem 4.2 it follows that Y1 is either of type

(P2) or of type (I1, 1) . However, Y1 cannot be of type (P2) , because then N would be

isometric to Q1 and therefore of constant curvature 2 .14 Therefore Y1 is of type (I1, 1)

and hence an isotropic subspace of Tp0Q(AEnd(W )) . By the same arguments one sees that also

Y2 := (f0)∗T(q,q)({q}×IP(W )) is a complex-1-dimensional isotropic subspace of Tp0Q(AEnd(W )) ,

and obviously Tp0Q(AEnd(W )) = Y1 	 Y2 holds.

Both Q(AEnd(W )) and Q′ are 2-dimensional complex quadrics, therefore there exists a holo-

morphic isometry g : Q(AEnd(W )) → Q′ with g(p0) = p . Tp0g : Tp0Q(AEnd(W )) → TpQ
′ is

an isomorphism of CQ-spaces, and therefore maps isotropic subspaces onto isotropic subspaces,

hence {Y1, Y2} onto {C(x− Jy), C(x+ Jy)} . g can be chosen such that

g∗Y1 = C(x− Jy) and g∗Y2 = C(x+ Jy)

holds.

Further we fix an arbitrary holomorphic isometry h1 : IP1 → IP(W ) . Moreover, we regard IRP1

as a submanifold of IP1 (then IRP1 is a geodesic circle in IP1 ) and consider the geodesic circle

C ⊂ IP(W ) so that q ∈ C and (g ◦ f0)∗(T(q,q)({q} ×C)) = IR(x+ Jy) holds. Then there exists

a holomorphic isometry h2 : IP1 → IP(W ) with h2(IRP1) = C .

f := g ◦ f0 ◦ (h1 × h2) : IP1 × IP1 → Q′ is a holomorphic isometry, and it follows from the

construction of g and hk that f has the properties stated in the proposition. �

14As will be shown in Proposition 8.1, Q1 is isometric to S2
1/

√
2
.
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5.7 Type (A)

In this section we suppose m ≥ 3 .

5.25 Proposition. Let p ∈ Q and a curvature-invariant subspace U ⊂ TpQ of type (A) be given.

Then the connected, complete, totally geodesic submanifold M of Q with p ∈M and TpM = U

is isometric to the sphere S2
r=

√
10/2

.

Proof. By definition of the type (A) there exist A ∈ A(Q, p) and an orthonormal system

(x, y, z) in V (A) so that with

a := 1√
5
(2x+ Jy) and b := 1√

5
(y + Jx+

√
3 Jz) ,

(a, b) is an orthonormal basis of U . As was already mentioned in the proof of Theorem 4.2

(see Equation (4.1)), we have

〈R(a, b)b , a 〉 = 2
5

where R denotes the curvature tensor of Q . Because the curvature tensor of the Riemannian

symmetric space M is parallel, it follows that M is a space of constant curvature 2
5 = 1

r2
with

r :=
√

10
2 , and therefore M is locally isometric to the sphere S2

r . Hence M is isometric either

to the sphere S2
r , or to the real projective space IRP2 equipped with a Riemannian metric of

constant sectional curvature 2
5 . To decide between these two cases, we calculate the length of

closed geodesics in M : Let v ∈ S(TpM) be given. Because M is a complete, totally geodesic

submanifold of Q , the maximal geodesic γv : IR → Q of Q with γv(0) = p and γ̇v(0) = v

runs completely in M and also is a geodesic of M . We have ϕ(v) = arctan( 1
2) , therefore it

follows from Proposition 5.18(a)(iii) that γv is periodic and that its minimal period is

√
10 · π = 2πr .

This shows that M is isometric to S2
r . �

5.26 Remarks. (a) In the situation of Proposition 5.25 one would like to construct a totally

geodesic, isometric embedding f : S2√
10/2

→ Q onto M explicitly, as we did for the

other types of totally geodesic submanifolds. Such an embedding can be constructed via

the fact that M = exp(U) holds, where exp : TpQ → Q denotes the exponential map

of the complete Riemannian manifold Q . However, this construction results in a very

complicated formula for f , which does not provide any insight into the geometry of M .

At the moment, I am unable to give a clearer, more informative description of M .

(b) In the situation described in Proposition 5.25 there does not exist a horizontal submanifold

M̃ of Q̃ with π(M̃ ) = M , because U is not totally real. This follows by combination of

several results from [Rec85]: Theorem 5, Theorem 6 and Theorem 4(a).

(c) Note that the diameter of M is π ·
√

10/2 , which is strictly larger than the diameter

π/
√

2 of Q (see Proposition 5.20).
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5.8 Isometric totally geodesic submanifolds

Theorem 5.1 follows from Propositions 5.10, 5.11, 5.12, 5.18, 5.21, 5.24 and 5.25. It has the

following corollary:

5.27 Corollary. Let M1,M2 be two connected, complete, totally geodesic submanifolds of Q .

(a) M1 and M2 are holomorphically congruent in Q if and only if they are of the same type

(see Proposition 5.2, also note the identifications of types stated in Theorem 4.2).

(b) If M1 and M2 are of real dimension ≥ 3 , then they are of the same type if and only if

they are isometric to each other.15

Proof. For (a). If there exists f ∈ Ih(Q) so that M2 = f(M1) holds, we fix p ∈ M1 .

Then we have f∗TpM1 = Tf(p)M2 . Because Tpf : TpQ → Tf(p)Q is a CQ-isomorphism by

Proposition 3.2(a), it follows by Theorem 4.2 that TpM1 and Tf(p)M2 , hence M1 and M2 , are

of the same type.

Conversely, if M1 and M2 are of the same type, we fix pk ∈Mk for k ∈ {1, 2} . Because Tp1M1

and Tp2M2 are curvature-invariant subspaces of Tp1Q resp. Tp2Q of the same type, Theorem 4.2

shows that there exists a CQ-isomorphism L : Tp1Q → Tp2Q with L(Tp1M1) = Tp2M2 . By

Theorem 3.5(a) there exists a holomorphic isometry f : Q→ Q with f(p1) = p2 and Tp1f = L .

We thus have f∗Tp1M1 = Tp2M2 , and therefore f(M1) = M2 because of the rigidity of totally

geodesic submanifolds. Hence M1 and M2 are holomorphically congruent in Q .

For (b). We now suppose that M1 and M2 are of real dimension ≥ 3 . If they are of the

same type, it has already been shown in (a) that they are holomorphically congruent in Q ; in

particular they are isometric to each other. Conversely, if M1 and M2 are isometric to each

other, then an inspection of the table of isometry classes in Theorem 5.1 shows that M1 and

M2 have to be of the same type. �

15Note that this statement is false if M1 and M2 are of dimension 1 or 2 . For the case of dimension 1 ,

the totally geodesic submanifolds of type (Geo, t) are isometric to IR for all t ∈ [0, π
4
] with tan(t) ∈ IR \ Q.

For the case of dimension 2 : We will see in Section 8.1 that Q1 is isometric to S2
1/

√
2

and therefore both the

submanifolds of type (P1, 2) and of type (P2) are isometric to S2
1/

√
2
.
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Chapter 6

Subquadrics

Let Q ⊂ IP(V) be an m-dimensional complex quadric. Then for every k < m , Q contains

k-dimensional, complex submanifolds Q′ which are complex quadrics in the following sense:

For each Q′ there exists a (k + 1)-dimensional complex projective subspace Λ of IP(V) such

that Q′ is a complex quadric in Λ in the sense of Chapter 1. We call such submanifolds of Q

subquadrics of Q , and they are the subject of study of the present chapter.

The totally geodesic submanifolds of Q of type (G1, k) are subquadrics of Q . However, for

k ≤ m
2 − 1 , not every k-dimensional subquadric of Q is a totally geodesic submanifold. In fact,

it will turn out that then there exists an infinite multitude of congruence classes of k-dimensional

subquadrics of Q , and that the set of these congruence classes can be parameterized by an angle

t ∈ [0, π4 ] , where the totally geodesic subquadrics constitute the congruence class with t = 0 .

The subquadrics corresponding to the angle t are obtained from the totally geodesic ones by

a “rotation” by this angle, compare Theorem 6.13(c) and Remark 6.14. — On the other hand,

for k > m
2 − 1 all k-dimensional subquadrics of Q are totally geodesic submanifolds of type

(G1, k) .

In Section 6.1 we prove a classification of the subquadrics in a given complex quadric Q ⊂ IP(V) .

In particular, we characterize those complex subspaces U of V for which there exists a complex

quadric in [U ] = IP(U) which is a subquadric of Q . We call the complex subspaces of V with

this property complex t-subspaces; here the parameter t ∈ [0, π4 ] corresponds to a congruence

class of subquadrics as described above. The objective of Section 6.2 is to further study the

properties of t-subspaces, in particular see Theorem 6.13. In Section 6.3 we study the extrinsic

geometry of subquadrics Q′ regarded as submanifolds of Q ; it will turn out that the geometry

depends strongly on the parameter t .

As before, we fix m ∈ IN , let (V,A) be a CQ-space of dimension n := m + 2 and consider

the m-dimensional complex quadric Q := Q(A) . For any unitary space U we denote the set

of conjugations on U by Con(U) .

143
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6.1 Complex subquadrics of a complex quadric

6.1 Definition. Suppose k ∈ {1, . . . ,m− 1} .

(a) We call Q′ ⊂ IP(V) a k-dimensional complex quadric if there exists a (k+1)-dimensional

complex projective subspace Λ of IP(V) such that Q′ is a (symmetric) complex quadric

in Λ in the sense of Chapter 1.

(b) We call a k-dimensional complex quadric Q′ a (complex) subquadric of Q if Q′ ⊂ Q

holds.

6.2 Examples. (a) For k < m , the totally geodesic submanifolds of Q of type (G1, k) are

k-dimensional complex subquadrics of Q .

(b) Suppose k ≤ m
2 − 1 and let Λ be a totally geodesic submanifold of Q of type (I1, k+1) .

Then Λ is a (k + 1)-dimensional complex projective subspace of IP(V) contained in Q

(see Proposition 5.21(a)), and every complex quadric Q′ in Λ is a k-dimensional complex

subquadric of Q . However, Q′ is not totally geodesic in Q (because otherwise it would

also be totally geodesic in Λ , which is impossible).

The aim of the present section is to classify all complex subquadrics of Q . As we already men-

tioned in the introduction of the chapter, it will turn out that there are many more congruence

classes of subquadrics of dimension ≤ m
2 − 1 besides the two described in Example 6.2.

In the sequel, we denote for any complex linear subspace U ⊂ V by PU : V → V the orthogonal

projection of V onto U . It should be noted that PU is C-linear and that

∀u ∈ U, v ∈ V : 〈u, v〉C = 〈u, PUv〉C (6.1)

holds.

6.3 Definition. Let a complex linear subspace U ⊂ V , t ∈ [0, π4 ] and A ∈ A be given. We then

call U a complex t-subspace of V if

∀u ∈ U \ {0} : ^(Au,U) = 2t

holds. Here we denote for v ∈ V \ {0} by ^(v, U) ∈ [0, π2 ] the angle between v and U ,

i.e. ^(v, U) := minu∈S(U) ^(v, u) ; this angle is also given by cos(^(v, U)) = ‖PU (v)‖/‖v‖ .

It is clear that the definition of a complex t-subspace does not depend on the choice of A ∈ A .

6.4 Examples. Let U ⊂ V be a complex subspace.

(a) U is a complex 0-subspace of V if and only if it is a CQ-subspace.

Proof. A complex subspace U ⊂ V is a CQ-subspace if and only if A(U) = U holds for A ∈ A , and this

is equivalent to ∀u ∈ U : PU (Au) = Au , which is in turn equivalent to U being a complex 0-subspace. �
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(b) U is a complex π
4 -subspace if and only if it is A-isotropic.

Proof. U being A-isotropic means that A(U) ⊂ U⊥ holds (see Proposition 2.20(a)), and this is equivalent

to PU |A(U) = 0 , which is in turn equivalent to U being a π
4
-subspace. �

6.5 Remark. Not every complex subspace U ⊂ V of dimension ≥ 2 is a complex t-subspace for

some t ∈ [0, π4 ] .

For example, let A ∈ A and (x1, x2, x3) be an orthonormal system in V (A) (remember that

dimIR V (A) = dimC V = n ≥ 3 holds). Further fix some ϕ ∈]0, π4 ] and consider

v1 := cos(ϕ)x1 + sin(ϕ)Jx2 and v2 := x3 .

Then U := Cv1	Cv2 is a complex-2-dimensional subspace of V . We have ^(Av1, U) = 2ϕ 6= 0 ,

but ^(Av2, U) = 0 , and therefore U is not a complex t-subspace of V for any t ∈ [0, π4 ] .

6.6 Theorem. (a) Let U be a complex t-subspace of V of dimension ≥ 3 with t ∈ [0, π4 [ . Then

Q′ := Q∩ [U ] is a complex subquadric of Q (like in the case of totally geodesic subquadrics

studied in Section 5.3), and for any A ∈ A

A′ :=
1

cos(2t)
(PU ◦A)|U (6.2)

is a conjugation on the unitary space U with Q′ = Q(A′) . We call a conjugation A′

obtained from some A ∈ A in this way an adapted conjugation on U (corresponding to

A ).

(b) Let U be a complex π
4 -subspace of V of dimension ≥ 3 . Then we have [U ] ⊂ Q , and

therefore every complex quadric in the complex projective space [U ] = IP(U) is a subquadric

of Q . In this situation we call every conjugation A′ on U an adapted conjugation on U

(corresponding to every A ∈ A ).

(c) Let Q′ be a k-dimensional subquadric of Q . Then there exists a unique t ∈ [0, π4 ] and

a unique complex t-subspace U of V of dimension k + 2 ≥ 3 so that Q′ is obtained by

the construction of (a) (for t < π
4 ) or (b) (for t = π

4 ) with these data. In this setting, we

call Q′ a (complex) t-subquadric of Q .

6.7 Definition. If U is a complex t-subspace of V ( t ∈ [0, π4 ] ) and A′ ∈ Con(U) is an adapted

conjugation on U , then we call the CQ-structure A′ := S1 ·A′ an adapted CQ-structure on U .

Note that then every element of A′ is an adapted conjugation on U and that for t < π
4 , A′ is

unique.

For the proof of Theorem 6.6 we shall need the following lemma:

6.8 Lemma. Let U ⊂ V be a complex linear subspace and t ∈ [0, π4 ] . Then U is a complex

t-subspace if and only if

∀A ∈ A ∃A′ ∈ Con(U) : cos(2t) ·A′ = (PU ◦ A)|U (6.3)

holds. In this case, Equation (6.3) is satisfied for a pair (A,A′) if and only if A′ is an adapted

conjugation on U corresponding to A .
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Proof of Lemma 6.8. Let us first suppose that (6.3) holds. We fix A ∈ A and choose A ′ ∈
Con(U) as in (6.3). Then we have for every u ∈ U \ {0}

cos(^(Au,U)) = ‖PU (Au)‖
‖Au‖

(6.3)
= cos(2t) ‖A′u‖

‖Au‖
(∗)
= cos(2t)

(where the equality marked (∗) follows from the fact that both A and A′ are conjugations, and

therefore ‖A′u‖ = ‖u‖ = ‖Au‖ holds), whence ^(Au,U) = 2t follows. Thus we have shown

that U is a complex t-subspace.

Let us now suppose conversely that U is a complex t-subspace. If t = π
4 holds, then we have

cos(2t) = 0 and (PU ◦ A)|U = 0 (U is A-isotropic by Example 6.4(b), and therefore we have

A(U) ⊂ U⊥ ), which shows that (6.3) is satisfied with arbitrary A′ ∈ Con(U) in this case. Thus

we may now suppose that t < π
4 holds. We let A ∈ A be given and put

A′ :=
1

cos(2t)
(PU ◦ A)|U .

We will show immediately that A′ ∈ Con(U) holds; then it is obvious that (6.3) holds with this

choice of A′ .

It is clear that A′ is anti-linear. We have for every u ∈ U

‖A′u‖ = 1
cos(2t) ‖PU (Au)‖ = 1

cos(2t) cos(^(Au,U)︸ ︷︷ ︸
=2t

) ‖Au‖︸ ︷︷ ︸
=‖u‖

= ‖u‖ ,

which shows that A′ is orthogonal with respect to 〈·, ·〉IR , and for every u, v ∈ U

〈A′u, v〉IR = 1
cos(2t) 〈PU (Au), v〉IR

(6.1)
= 1

cos(2t) 〈Au, v〉IR

= 1
cos(2t) 〈u,Av〉IR

(6.1)
= 1

cos(2t) 〈u, PU (Av)〉IR = 〈u,A′v〉IR ,

which shows that A′ is self-adjoint with respect to 〈·, ·〉IR . Therefore A′ is a conjugation on U .

The statement that Equation (6.3) is satisfied for a pair (A,A′) if and only if A′ is an adapted

conjugation on U corresponding to A is obvious from the definition of adaptedness in Theo-

rem 6.6(a),(b). �

Proof of Theorem 6.6. For (a). Let A ∈ A be given. Then Lemma 6.3 shows that the

endomorphism A′ defined by Equation (6.2) is a conjugation on U , therefore Q(A′) is a k-

dimensional complex quadric in IP(V) . We will show immediately that

Q(A′) = Q ∩ [U ] (6.4)

holds; then it also follows that Q ∩ [U ] is a subquadric of Q .

For the proof of (6.4) it should first be noted that both the left-hand side and the right-hand

side of that equation are contained in [U ] . Moreover, we have for every u ∈ S(U)

u ∈ Q̃(A′) ⇐⇒ 〈u,A′u〉C = 0 ⇐⇒ 1
cos(2t) 〈u, PU Au〉C = 0

(6.1)⇐⇒ 〈u,Au〉C = 0 ⇐⇒ u ∈ Q̃ ,

whence (6.4) follows.
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For (b). If U is a complex π
4 -subspace of V , then it is an A-isotropic subspace by Exam-

ple 6.4(b), and therefore we have [U ] ⊂ Q . Consequently every complex quadric in [U ] is a

subquadric of Q .

For (c). Let Q′ be a subquadric of Q ; this means that there exists a complex subspace U ⊂ V
and a conjugation A′ ∈ Con(U) so that Q′ = Q(A′) ⊂ Q holds.

We tentatively choose an arbitrary A ∈ A and consider the symmetric C-bilinear forms on U :

β : U × U → C, (v, w) 7→ 〈v,Aw〉C
and β′ : U × U → C, (v, w) 7→ 〈v,A′w〉C .

We have

β] = PU ◦ A|U and (β ′)] = A′ , (6.5)

where the Riesz endomorphisms are constructed in the unitary space U . We see from (6.5) that

β′ is non-degenerate. However, it should be noted that it is possible for β to be degenerate.

Because of the hypothesis Q′ ⊂ Q , we get

∀v ∈ U :
(
β′(v, v) = 0 =⇒ β(v, v) = 0

)
. (6.6)

Let us first consider the case where β is non-degenerate. Then Q′ = Q(β′) and Q(β) are

algebraic complex quadrics in the sense of Chapter 1 in the complex projective space IP(U) ,

and because of (6.6) we have Q′ ⊂ Q(β) . Because Q′ is compact, Q(β) is connected, and

these two manifolds are of the same dimension, we in fact have Q′ = Q(β) . By Proposition 1.3,

it follows that β ′ = λ · β holds for some λ ∈ C× . By appropriately modifying the tentative

choice of A ∈ A made above, we can ensure λ ∈ IR+ . From Equations (6.5) it follows that

A′ = λ · PU ◦ (A|U) (6.7)

holds. Choosing some v ∈ S(U) we see that

1 = ‖v‖ = ‖A′v‖ (6.7)
= ‖λPU (Av)‖ = λ · ‖PU (Av)‖ ≤ λ · ‖Av‖ = λ ,

and hence λ ≥ 1 holds. Therefore, there exists t ∈ [0, π4 [ with λ = 1
cos(2t) . Now Lemma 6.8

shows that U is a complex t-subspace, and (a) shows that the quadric Q′ = Q(A′) coincides

with Q ∩ [U ] .

Let us now consider the case where β is degenerate. We will show that then β = 0 holds; from

this it follows that PU ◦ A|U ≡ 0 holds and therefore U is A-isotropic and hence a complex
π
4 -subspace by Example 6.4(b). Thus Q′ is obtained by the construction of (b).

To show β = 0 we first note that because β is degenerate, there is some v0 ∈ U \ {0} so that

∀v ∈ U : β(v, v0) = 0 (6.8)

holds.
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Now consider the complex hyperplane L := { v ∈ U |β ′(v, v0) = 0 } of U and let v ∈ U \ L be

given. If we define wλ := λ v0 + v for λ ∈ C , we have

β′(wλ, wλ) = β′(v0, v0) · λ2 + 2β′(v, v0) · λ+ β′(v, v) (6.9)

and by Equation (6.8)

β(wλ, wλ) = β(v, v) . (6.10)

Because of v 6∈ L we have β ′(v, v0) 6= 0 . Therefore Equation (6.9) implies the existence of some

λ0 ∈ C with β′(wλ0 , wλ0) = 0 . By Equations (6.6) and (6.10) it follows that β(v, v) = 0 holds.

Thus, we have shown

∀v ∈ U \ L : β(v, v) = 0 . (6.11)

Because L is a proper linear subspace of U , U \ L is dense in U . Therefore (6.11) implies

∀v ∈ U : β(v, v) = 0 .

Because β is symmetric, we conclude β = 0 . �

6.2 Properties of complex t-subspaces

We saw in Theorem 6.6 that for any complex t-subspace U ⊂ V with t < π
4 , Q ∩ [U ] is a

subquadric of Q , and besides the subquadrics of Q which are contained in a complex projective

subspace Λ ⊂ IP(V) contained entirely in Q , all subquadrics of Q are obtained in this way.

For this reason it is of interest to study the properties of complex t-subspaces, which we do in

the present section.

The complex 0-subspaces and the complex π
4 -subspaces of V are exactly the CQ-subspaces

resp. the complex isotropic subspaces of V , as we already noted in Example 6.4; the properties

of these spaces have been studied extensively in Sections 2.2 and 2.3. Thus we will restrict the

following investigations to complex t-subspaces with 0 < t < π
4 . Where analogous statements

for the cases t = 0 or t = π
4 give additional insight, we take note of this fact in a remark.

We continue to use the notations of the previous section. In particular (V,A) is an n-

dimensional CQ-space and Q := Q(A) is the corresponding, (m = n− 2)-dimensional complex

quadric.

6.9 Proposition. Suppose 0 < t < π
4 .

(a) Any complex t-subspace U of V is of complex dimension ≤ n
2 .

(b) Any complex t-subquadric Q′ of Q is of complex dimension ≤ m
2 − 1 .

6.10 Remark. Note that the statement of Proposition 6.9 is also true for t = π
4 (see Corollary 2.22),

but not for t = 0 .
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Proof of Proposition 6.9. For (a). Let a a complex t-subspace U be given and fix A ∈ A .

Then we have for every u ∈ U \ {0} : ^(Au,U) = 2t and therefore Au 6∈ U . This shows that

A(U)∩U = {0} holds, and therefore we have 2 dimU = dimA(U)+dimU = dim(A(U)⊕U) ≤
dim V = n .

For (b). Let Q′ be a complex t-subquadric of Q . By Theorem 6.6, Q′ is contained in [U ] ,

where U is some complex t-subspace of V . Therefore we have by (a): dimQ′ = dimU − 2 ≤
m
2 − 1 . �

In the sequel, we will consider the characteristic angle (in the sense of Section 2.5) of vectors

with respect to varied CQ-structures. Wherever (Ṽ, Ã) is a CQ-space and v ∈ Ṽ , we now

denote the Ã-angle of v by ϕeA(v) for this reason.

6.11 Proposition. Let U ⊂ V be a complex t-subspace with 0 < t < π
4 and A′ the adapted CQ-

structure for U (see Definition 6.7). Then we have

∀v ∈ U \ {0} : cos(2ϕA(v)) = cos(2t) · cos(2ϕA′(v)) . (6.12)

Proof. Without loss of generality, we may suppose v ∈ S(U) . Fix A ∈ A and let A′ ∈ A′

be the adapted conjugation on U corresponding to A . We then have by Theorem 2.28(a) and

Lemma 6.8

cos(2ϕA(v)) = |〈v,Av〉C |
(6.1)
= |〈v, PUAv〉C|

= |〈v, cos(2t)A′v〉C| = cos(2t) · |〈v,A′v〉C| = cos(2t) · cos(2ϕA′(v)) .

�

6.12 Corollary. Let U ⊂ V be a complex t-subspace with 0 < t < π
4 and A′ the adapted CQ-

structure for U . Then we have for every v ∈ U \ {0}

ϕA(v) ≥ t (6.13)

and

ϕA(v) = t ⇐⇒ ϕA′(v) = 0 , (6.14)

ϕA(v) = π
4 ⇐⇒ ϕA′(v) = π

4 . (6.15)

Proof. Let v ∈ U \ {0} be given. By Proposition 6.11 we have

cos(2ϕA(v)) = cos(2t) · cos(2ϕA′(v)) ≤ cos(2t) ,

therefrom (6.13) follows. Because of cos(2t) 6= 0 , also (6.14) and (6.15) are obvious consequences

of Proposition 6.11. �
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6.13 Theorem. Let k ∈ IN with k ≤ n
2 and 0 < t < π

4 be given. Then the following statements are

equivalent for any k-dimensional complex subspace U ⊂ V :

(a) U is a complex t-subspace of V .

(b) t = minv∈S(U) ϕA(v) and there exists a totally real k-dimensional subspace W of U with

S(W ) ⊂Mt .
16 (Note that U = W 	 JW holds in this situation.)

(c) There exist A ∈ A , a 2k-dimensional linear subspace W ⊂ V (A) , an orthogonal complex

structure τ : W → W and a k-dimensional, totally real subspace Y of the unitary space

(W, τ) so that U = gt(Y ⊕ JY ) holds with the C-linear map

gt : Y ⊕ JY → V , z 7→ cos(t)z + sin(t)JτCz ;

here, τC : W ⊕ JW → W ⊕ JW denotes the complexification of the IR-linear endo-

morphism τ : W → W with respect to the orthogonal complex structure J |(W ⊕ JW ) .

Regarded as a map onto U , gt is a C-linear isometry.

Moreover, we have:

(i) U is tangential to Mt along Mt ∩ U , meaning that for any v ∈Mt ∩ U we have TvU ⊂
TvMt .

(ii) The map gt : Y ⊕ JY → U from (c) is a CQ-isomorphism; here we regard Y ⊕ JY as a

CQ-subspace of V , and the complex t-subspace U as a CQ-space with its (unique) adapted

CQ-structure A′ .

6.14 Remark. The equivalence (a) ⇔ (b) ⇔ (c) in Theorem 6.13 is also true for t = 0 and t = π
4 .

Proof for t = 0 . Note that the complex 0-subspaces are exactly the CQ-subspaces of V , see Example 6.4(a).

For (a) =⇒ (b), choose W := U ∩ V (A) with any A ∈ A . For (b) =⇒ (a): We show that under the hypothesis

of (b), U is invariant under any given A ∈ A and thus a CQ-subspace. Let v ∈ U = W 	 JW be given, say

v = x1 + Jx2 with x1, x2 ∈ W . Because of S(W ) ⊂ M0 there exists λ` ∈ S1 with x` ∈ V (λ`A) for ` ∈ {1, 2} .

We have Ax1 = λ1 λ1Ax1 = λ1 x1 ∈W 	 JW = U and analogously AJx2 ∈ U , therefrom Av ∈ U follows. For

(a) =⇒ (c), choose A ∈ A arbitrarily, put Y := V (A) ∩ U , let Y ′ be another k-dimensional subspace of V (A)

with Y ′ ⊥ Y (remember dimV (A) = n ≥ 2k ), put W := Y 	Y ′ and let τ : W →W be an orthogonal complex

structure on W with τ (Y ) = Y ′ . In the setting of (c) we then have Y ⊕ JY = U and gt=0 = idU , hence

gt=0(Y ⊕ JY ) = U . For (c) =⇒ (a): In this situation we have U = Y ⊕ JY and therefore U is a CQ-subspace

of V .

Proof for t = π
4

. Note that U is a complex π
4
-subspace if and only if it is an A-isotropic subspace (Exam-

ple 6.4(b)), which is in turn the case if and only if ϕA(v) = π
4

holds for every v ∈ U \ {0} (Proposition 2.29(b)).

Therefrom the equivalence (a) ⇐⇒ (b) follows (for (a) =⇒ (b), W can be chosen as any maximal totally real

subspace of U ). (a) ⇐⇒ (c) follows from Proposition 2.20(e),(f). �

Therefore every selection of data (A,W, τ, Y ) as in Theorem 6.13(c) gives rise to a series (Ut :=

gt(Y ⊕JY ))t∈[0,
π
4 ] of k-dimensional complex t-subspaces, where gt is defined as in the theorem.

16Here Mt denotes the orbit of the action of Aut(A) on S(V) consisting of the unit vectors of A-angle t , see

Proposition 2.36.
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Moreover every k-dimensional complex t-subspace U ⊂ V is a member of such a series (by virtue

of the implication (a) =⇒ (c)).

A similar statement holds on the level of complex subquadrics of Q : If k ≥ 3 holds in the

previous situation, then Q′
0 := Q ∩ [U0] is a (k − 2)-dimensional complex 0-subquadric of Q ,

and via the linear isometry gt we obtain the series (Q′
t := gt(Q

′
0))t∈[0,

π
4 ] of (k− 2)-dimensional

complex t-subquadrics of Q . Note that the subquadrics Q′
t with t < π

4 can also be described

as Q′
t = Q ∩ [Ut] without explicit reference to gt , however Q′

π/4 cannot be obtained in this

way. Moreover every (k − 2)-dimensional subquadric of Q is a member of such a series.

Proof of the last statement. Let a (k − 2)-dimensional subquadric Q′ of Q be given; by Theorem 6.6(c) there

exists t0 ∈ [0, π
4
] and a k-dimensional complex t0-subspace U ⊂ V so that Q′ is a complex quadric in [U ] . In

the case t0 <
π
4

we have Q′ = Q∩ [U ] by Theorem 6.6(a). It follows that if we define the data (A,W, τ, Y ) such

that the corresponding series (Ut)t∈[0,
π
4

]
of complex t-subspaces satisfies Ut0 = U , then the series (Q′

t)t∈[0,
π
4

]

of complex t-subquadrics satisfies Q′
t0 = Q′ .

It remains to consider the case t0 = π
4

. Then U is A-isotropic (Example 6.4(b)) and by Theorem 6.6(b) there

exists a conjugation A′ ∈ Con(U) so that Q′ = Q(A′) holds. V (A′) is a totally real, k-dimensional, A-isotropic

subspace of V ; it follows by Proposition 2.20(e),(f) that after a choice of some A ∈ A there exist orthogonal,

k-dimensional subspaces Y, Y ′ ⊂ V (A) and an IR-linear isometry τ : Y → Y ′ so that

V (A′) = { x+ Jτx |x ∈ Y } (6.16)

holds. We put W := Y ⊕ Y ′ and denote the unique extension of τ to an orthogonal complex structure on W

also by τ : W → W . If we now define the functions gt from Theorem 6.13(c) relative to this situation, we have

gπ
4
(Y ) = V (A′) by Equation (6.16), therefrom g π

4
(Y ⊕JY ) = U and gπ

4
◦ (A|(Y ⊕JY )) = A′ ◦gπ

4
follows. This

shows that if we define the series (Q′
t)t∈[0,

π
4

]
with respect to the data (A,W, τ, Y ) , we have Q′

π
4

= Q(A′) = Q′ .

�

For the proof of Theorem 6.13 we will need the following lemma:

6.15 Lemma. Let a k-dimensional complex subspace U ⊂ V and 0 < t < π
4 be given. Then U is

a complex t-subspace of V if and only if there exists a unitary basis (v1, . . . , vk) of U so that

∀` : ϕA(v`) = t and ∀` 6= `′ : 〈v`, Av`′〉C = 0 (6.17)

holds for some (and then for every) A ∈ A .

If this is the case, the v` can be chosen such that a fixed A ∈ A is adapted to all v` in the

sense of Theorem 2.28(b), and then (x1, . . . , xk, y1, . . . , yk) with x` := ReA v`
cos t and y` := ImA v`

sin t

is an orthonormal system in V (A) .

Proof of Lemma 6.15. First, let us suppose that U is a complex t-space; we denote its adapted

CQ-structure by A′ . We let A ∈ A be fixed, let A′ ∈ A′ be the adapted conjugation on U

corresponding to A , and let (v1, . . . , vk) be an orthonormal basis of V (A′) . Then (v1, . . . , vk)

also is a unitary basis of U , and we will show that it satisfies (6.17).

We have ϕA′(v`) = 0 (where ` ∈ {1, . . . , k} ) and therefore ϕA(v`) = t by Corollary 6.12.

Moreover, for ` 6= `′ we have by Lemma 6.8

〈v`, Av`′〉C
(6.1)
= 〈v`, PU Av`′〉C = cos(2t) · 〈v`, A′v`′〉C

v`′∈V (A′)
= cos(2t) · 〈v`, v`′〉C = 0 .

This shows that (6.17) holds.
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Conversely, we suppose that (v1, . . . , vk) is a unitary basis of U so that (6.17) holds. We fix

A ∈ A , then we have for every j ∈ {1, . . . , k}

‖PU (Avj)‖2 =

k∑

`=1

|〈Avj , v`〉C|2
(6.17)
= |〈Avj , vj〉C|2 = |〈vj , Avj〉C|2

(2.19)
= cos(2t)2 (6.18)

and for every j, j ′ ∈ {1, . . . , k} with j 6= j ′

〈PU (Avj), PU (Avj′)〉C =

〈 k∑

`=1

〈Avj , v`〉Cv` ,
k∑

`′=1

〈Avj′ , v`′〉Cv`′
〉

=
k∑

`,`′=1

〈Avj , v`〉C︸ ︷︷ ︸
=0 for ` 6= j

· 〈Avj′ , v`′〉C︸ ︷︷ ︸
=0 for `′ 6= j′

· 〈v`, v`′〉C︸ ︷︷ ︸
=δ`,`′

j 6=j′
= 0 . (6.19)

We now let v ∈ U \ {0} be given, say v =
∑k

j=1 λj vj with λj := 〈v, vj〉C . Then we have

PU (Av) =

k∑

j=1

λj PU (Avj)

and therefore

‖PU (Av)‖2 (6.19)
=

k∑

j=1

|λj |2 ‖PU (Avj)‖2 (6.18)
= cos(2t)2 ·

k∑

j=1

|λj |2 = cos(2t)2 · ‖v‖2 ,

whence ^(Av,U) = 2t follows. This shows that U is a complex t-subspace, see Definition 6.3.

Next we note that if some A ∈ A is adapted to some v ∈ V\{0} and µ ∈ S1 is given, then µ2A

is adapted to µv by Corollary 2.35. From this fact it follows that for every fixed A ∈ A and any

unitary basis (v1, . . . , vk) of U there exist λ1, . . . , λk ∈ S1 so that A is adapted to all λ` v` .

Moreover, if the basis (v1, . . . , vk) satisfies (6.17), then (λ1v1, . . . , λkvk) also satisfies (6.17).

Thus we see that if U is a complex t-subspace, then the unitary basis (v1, . . . , vk) satisfying

(6.17) can be chosen such that A is adapted to all v` . In the following we suppose that this

situation is present.

We put x` := ReA v`
cos t and y` := ImA v`

sin t ; then we get with Proposition 2.3(e)

v` = cos(t)x` + sin(t)Jy` ; (6.20)

moreover from (6.17) and Theorem 2.28(c) we obtain

‖x`‖ = ‖y`‖ = 1 (6.21)

and (where we abbreviate 〈·, ·〉 := 〈·, ·〉IR )

〈x`, y`〉 = 0 . (6.22)

This shows that Equation (6.20) is a canonical representation for v in the sense of Theo-

rem 2.28(c).
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Now let `, `′ with `′ 6= ` be given. Because (v1, . . . , vk) is a unitary basis, we have

0 = 〈v`, v`′〉C = cos(t)2〈x`, x`′〉 + sin(t)2〈y`, y`′〉 + i · cos(t) sin(t) (〈y`, x`′〉 − 〈x`, y`′〉) ,

and thus (note cos(t) sin(t) 6= 0 )

cos(t)2〈x`, x`′〉 + sin(t)2〈y`, y`′〉 = 0 , (6.23)

〈y`, x`′〉 − 〈x`, y`′〉 = 0 . (6.24)

From (6.17) we further obtain

0 = 〈v`, Av`′〉C = cos(t)2〈x`, x`′〉 − sin(t)2〈y`, y`′〉 + i · cos(t) sin(t) (〈y`, x`′〉 + 〈x`, y`′〉) ,

and this equation implies

cos(t)2〈x`, x`′〉 − sin(t)2〈y`, y`′〉 = 0 , (6.25)

〈y`, x`′〉 + 〈x`, y`′〉 = 0 . (6.26)

From Equations (6.23) and (6.25) we see

〈x`, x`′〉 = 〈y`, y`′〉 = 0 , (6.27)

whereas from Equations (6.24) and (6.26) we conclude

〈x`, y`′〉 = 0 . (6.28)

Equations (6.21), (6.22), (6.27) and (6.28) exactly state the fact that (x1, . . . , xk, y1, . . . , yk) is

an orthonormal system in V (A) . �

Proof of Theorem 6.13. We prove the theorem in the following order: (a) ⇒ (c), (ii), (c) ⇒ (b),

(i), (b) ⇒ (a).

For (a) ⇒ (c). Let U be a complex t-subspace and fix A ∈ A . By Lemma 6.15 there exists a

unitary basis (v1, . . . , vk) of U which satisfies (6.17) and such that A is adapted to all v` . We

put x` := ReA v`
cos t , y` := ImA v`

sin t . Again by Lemma 6.15, (x1, . . . , xk, y1, . . . , yk) is an orthonormal

system in V (A) , and hence

W := spanIR{x1, . . . , xk, y1, . . . , yk}

is a 2k-dimensional linear subspace of V (A) . The linear map τ : W →W defined by

∀` : τ(x`) = y`, τ(y`) = −x`

is an orthogonal complex structure on W and

Y := spanIR{x1, . . . , xk}

is a k-dimensional, totally real subspace of the unitary space (W, τ) . Using these data, we

define gt as in the theorem. It is clear that gt is C-linear. Moreover, it transforms the
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unitary basis (x1, . . . , xk) of Y ⊕JY into the unitary basis (v1, . . . , vk) of U . This shows that

gt(Y ⊕ JY ) = U holds and that gt : Y ⊕ JY → U is a C-linear isometry.

For (ii). Remaining in the situation of the proof of (c), it suffices to show that A ′ := gt◦A◦g−1
t :

U → U is an adapted conjugation for the complex t-space U corresponding to A ∈ A , meaning

that

∀v ∈ U : cos(2t) ·A′v = PU (Av) (6.29)

holds, see Lemma 6.8. Because both sides of this equation are anti-linear, it suffices to verify it

for v = vj , j ∈ {1, . . . , k} . We have vj = gt(xj) and therefore

A′vj = gt(Axj) = gt(xj) = vj ;

on the other hand we have

PU (Avj) =

k∑

`=1

〈Avj , v`〉C v`
(6.17)
= 〈Avj , vj〉C vj

(∗)
= cos(2t) vj ,

for the equals sign marked (∗) we use the canonical representation (6.20) of vj . This shows that

Equation (6.29) holds.

For (c) ⇒ (b). We suppose that the situation of (c) is present. Then we have for every

z ∈ S(Y ⊕ JY ) by Theorem 2.28(a)

cos(2ϕA(gt(z))) = |〈gt(z), A(gt(z))〉C| = |〈cos(t)z + sin(t)JτCz , cos(t)Az − sin(t)JτCAz〉C|
= | cos(t)2 〈z,Az〉C + cos(t) sin(t) · (−〈z, JτCAz〉C + 〈JτCz,Az〉C)︸ ︷︷ ︸

=0

− sin(t)2 〈JτCz, JτCAz〉C︸ ︷︷ ︸
=〈z,Az〉C

|

= |(cos(t)2 − sin(t)2) · 〈z,Az〉C| = cos(2t) · |〈z,Az〉C | = cos(2t) · cos(2ϕA(z)) .

It follows from this calculation that we have on one hand

∀z ∈ S(Y ⊕ JY ) : cos(2ϕA(gt(z)) ≤ cos(2t)

and therefore because gt is a linear isometry onto U :

∀v ∈ S(U) : ϕA(v) ≥ t ; (6.30)

on the other hand, for every z ∈ S(Y ) we have ϕA(z) = 0 and therefore by the same calculation

ϕA(gt(z)) = t . This shows that the k-dimensional totally real subspace gt(Y ) of U has the

property S(gt(Y )) ⊂Mt . This fact, together with (6.30), also implies minv∈S(U) ϕA(v) = t .

For (i). Suppose that the situation of (b) holds. Let v ∈ Mt ∩ U and w ∈ TvU be given.

Then the line parametrization γ : IR → U, t 7→ v + t · −→w satisfies γ(0) = v and γ̇(0) = w .

Furthermore, the function f := ϕA ◦γ :]− ε, ε[→ [0, π4 ] satisfies f(0) = t and is differentiable in

0 by Proposition 2.30. Because of t = minv∈S(U) ϕA(v) = minv∈U\{0} ϕA(v) , f attains a local

minimum in 0 and therefore we have

0 = f ′(0) =
−−−−−−−−→
TvϕA(γ̇(0)) =

−−−−−−→
TvϕA(w)

and hence w ∈ ker(TvϕA) = TvMt (see Proposition 2.38).
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For (b) ⇒ (a). We now suppose that t = minv∈S(U) ϕA(v) holds and that there exists a k-

dimensional totally real subspace W of U with S(W ) ⊂Mt . Consequently, we have

∀v ∈ U \ {0} : ϕA(v) ≥ t ,

whence it follows that

∀v ∈ U \ {0} : cos(2ϕA(v)) ≤ cos(2t) (6.31)

holds.

Let us fix an orthonormal basis (v1, . . . , vk) of W , then (v1, . . . , vk) also is a unitary basis of

U . We will show that this unitary basis satisfies (6.17); thus U is a complex t-subspace of V
according to Lemma 6.15.

Because of S(W ) ⊂Mt we have

∀` : ϕA(v`) = t . (6.32)

Now suppose `, `′ are given with ` 6= `′ and choose λ, µ ∈ S1 so that some A ∈ A is adapted

to both λv` and µv`′ . Then we have because of Theorem 2.28(b)

〈λv`, Aλv`〉C = 〈µv`′ , Aµv`′〉C = cos(2t) . (6.33)

Furthermore, we choose ε ∈ {±1} so that

ε · 〈λv`, Aµv`′〉IR ≥ 0 (6.34)

holds. Then the vector w := λv`+ εµv`′ ∈ U satisfies ‖w‖2 = 2 and by means of Theorem 2.28

we have (for (∗) note that the C-bilinear form 〈 · , A · 〉C is symmetric)

〈w,Aw〉C
(∗)
= 〈λv`, Aλv`〉C + 2 · 〈λv`, εAµv`′〉C + ε2 · 〈µv`′ , Aµv`′〉C

(6.33)
= 2·

(
cos(2t) + ε · 〈λv`, Aµv`′〉C

)

= 2·
(

cos(2t) + ε · 〈λv`, Aµv`′〉IR + iε · 〈λv`, JAµv`′〉IR
)
. (6.35)

Consequently, we obtain (again using Theorem 2.28 and the fact that cos(2t) ≥ 0 holds)

(2 · cos(2t))2
(6.31)

≥ (2 · cos(2ϕA(w)))2 = |〈w,Aw〉C |2
(6.35)
= 4·

∣∣ cos(2t) + ε 〈λv`, Aµv`′〉IR + i ε〈λv`, JAµv`′〉IR
∣∣2

= 4·
(
(cos(2t) + ε 〈λv`, Aµv`′〉IR︸ ︷︷ ︸

≥
(6.34)

0

)2 + (ε 〈λv`, JAµv`′〉IR)2︸ ︷︷ ︸
≥0

)

≥ 4 · cos(2t)2 = (2 · cos(2t))2 .

Therefore all inequalities in the above chain of inequalities are in fact equalities. It follows that

〈λv`, Aµv`′〉IR = 〈λv`, JAµv`′〉IR = 0

and thus

λµ · 〈v`, Av`′〉C = 〈λv`, Aµv`′〉C = 〈λv`, Aµv`′〉IR + i · 〈λv`, JAµv`′〉IR = 0 (6.36)

holds. Equations (6.32) and (6.36) show that the unitary basis (v1, . . . , vk) satisfies (6.17). �
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In the following proposition we see that for fixed 0 < t < π
4 and k ≤ n

2 , the set of k-dimensional

complex t-subspaces of V is an orbit of the canonical action of the group Aut(A)∪Aut(A) (see

Definition 2.10(a),(c) and Remark 2.12(b)) on the complex Grassmannian Gk(V) ; here Aut(A)

is the subgroup of CQ-isomorphisms of V and Aut(A) is the coset of CQ-anti-isomorphisms of

V . Note that Aut(A) = {A ◦ B |B ∈ Aut(A) } holds for A ∈ A . In fact already Aut(A) acts

transitively on the mentioned orbit.

Also, we will see in Corollary 6.17 that for m 6= 2 the set of (k − 2)-dimensional complex

t-subquadrics of Q is an orbit of the canonical action of the isometry group I(Q) on the set of

all subquadrics of Q , and already Ih(Q) acts transitively on this orbit.

6.16 Proposition. Suppose 0 < t < π
4 and k ≤ n

2 .

(a) Let a k-dimensional complex t-subspace U of V and B ∈ Aut(A) ∪ Aut(A) be given.

Then B(U) is another complex t-subspace of V , and if A′ ∈ Con(U) is an adapted

conjugation for U corresponding to A ∈ A , then BA′B−1|B(U) ∈ Con(B(U)) is an

adapted conjugation for B(U) corresponding to BAB−1 ∈ A .

(b) If U1 and U2 are two k-dimensional complex t-subspaces of V , then there exists B ∈
Aut(A) so that U2 = B(U1) holds. If A′

1 and A′
2 are adapted conjugations for U1 and

U2 respectively, B can be chosen so that A′
2 = BA′

1B
−1|U2 holds.

Proof. For (a). Let A ∈ A be given and let A′ be the adapted conjugation for U corresponding

to A , then we have

cos(2t) · A′ = (PU ◦ A)|U (6.37)

(see Lemma 6.8). We also let B ∈ Aut(A) ∪ Aut(A) be given and put A′′ := BA′B−1|B(U) .

Then we have A′′ ∈ Con(B(U)) (this is true even for B ∈ Aut(A) ), and for every v ∈ B(U) :

cos(2t) ·A′′(v) = B
(

cos(2t) ·A′(B−1v︸ ︷︷ ︸
∈U

)
) (6.37)

= B
(
PU ◦ A(B−1v)

)
= PB(U)(BAB

−1(v)) .

We now show BAB−1 ∈ A ; from Lemma 6.8 it follows that B(U) is a complex t-subspace and

A′′ is an adapted conjugation corresponding to BAB−1 . In the case B ∈ Aut(A) , BAB−1 ∈
A follows from the definition of a CQ-isomorphism. In the case B ∈ Aut(A) , there exists

B′ ∈ Aut(A) so that B = AB ′ holds. Because of B ′A(B′)−1 ∈ A there exists λ ∈ S1 so that

B′A(B′)−1 = λA holds, and then we have

BAB−1 = (AB′)A (AB′)−1 = AB′A(B′)−1A = A(λA)A = λA ∈ A .

For (b). Let two k-dimensional complex t-subspaces U1 and U2 be given, and let A′
1 and A′

2

be adapted conjugations for U1 resp. U2 . Thus there exist A1, A2 ∈ A so that

cos(2t) · A′
` = (PU`

◦ A`)|U` (6.38)

holds for ` ∈ {1, 2} .
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Now we fix orthonormal bases (u1, . . . , uk) of V (A′
1) and (u′1, . . . , u

′
k) of V (A′

2) , and we put

for ` ∈ {1, . . . , k}

x` :=
ReA1

u`

cos t , y` :=
ImA1

u`

sin t , x′` :=
ReA2

u′`
cos t and y′` :=

ImA2
u′`

sin t .

By Lemma 6.15 we see that (x1, . . . , xk, y1, . . . , yk) and (x′1, . . . , x
′
k, y

′
1, . . . , y

′
k) are orthonormal

systems in V (A1) resp. V (A2) . We choose an IR-linear isometry L : V (A1) → V (A2) with

L(x`) = x′` and L(y`) = y′`

for every ` , then the complexification B := LC : V → V of L is a CQ-automorphism with

B(u`) = u′` , consequently B(U1) = U2 and BA′
1B

−1|U2 = B′
2 holds. �

6.17 Corollary. Suppose 0 < t < π
4 and k ≤ n

2 .

(a) For any complex t-subquadric Q′ of Q and any f ∈ Ih(Q) ∪ Iah(Q) , f(Q′) is another

complex t-subquadric of Q .17

(b) If Q′
1 and Q′

2 are two (k− 2)-dimensional complex t-subquadrics of Q , then there exists

f ∈ Ih(Q) with Q′
2 = f(Q′

1) .

Proof. For (a). By Theorem 6.6(c),(a) there exists a complex t-subspace U ⊂ V so that Q ′ =

Q∩[U ] holds. For any given f ∈ Ih(Q)∪Iah(Q) there exists B ∈ Aut(A)∪Aut(A) with f = B|Q
by Theorem 3.23(a),(b). Then B(U) is another complex t-subspace by Proposition 6.16(a), and

therefore Theorem 6.6(a) shows that f(Q′) = B(Q′) = B(Q ∩ [U ]) = Q ∩ [B(U)] is another

complex t-subquadric of Q .

For (b). Again by Theorem 6.6(c),(a) there exist k-dimensional complex t-subspaces U1, U2 ⊂ V
so that Q′

` = Q∩[U`] holds for ` ∈ {1, 2} . By Proposition 6.16(b) there exists B ∈ Aut(A) with

U2 = B(U1) , then we have f := B|Q ∈ Ih(Q) by Proposition 3.2(a) and f(Q′
1) = B(Q∩ [U1]) =

Q ∩ [B(U1)] = Q ∩ [U2] = Q′
2 . �

6.18 Remark. The statements of Proposition 6.16 and Corollary 6.17 are also true for t = 0 and

t = π
4 .

6.3 Extrinsic geometry of subquadrics

As before, we suppose that (V,A) is an (n = m+ 2)-dimensional CQ-space. Moreover, we let

a k-dimensional subquadric Q′ of the m-dimensional complex quadric Q := Q(A) be given.

Then Theorem 6.6(c) shows that Q′ is a complex t-subquadric for some 0 ≤ t ≤ π
4 , meaning

that there exists a (k+2)-dimensional complex t-subspace U ⊂ V so that Q′ is a (symmetric)

complex quadric in IP(U) in the sense of Chapter 1.

For t ∈ {0, π4 } we already have a complete overview of the extrinsic geometry of Q′ as a

submanifold of Q :

17Note that for m 6= 2 , Ih(Q) ∪ Iah(Q) = I(Q) holds by Theorem 3.23(c).
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(a) In the case t = 0 , U is a CQ-subspace of V and Q′ = Q ∩ [U ] is a totally geodesic

submanifold of Q of type (G1, k) by Lemma 5.8.

(b) In the case t = π
4 , U is A-isotropic, and therefore the complex projective space [U ] is a

totally geodesic submanifold of Q of type (I1, k + 1) . Therefore the embedding Q ′ ↪→ Q

is equal to the composition of the embedding Q′ ↪→ IP(U) = [U ] which has been studied in

Chapter 1 and the totally geodesic embedding [U ] ↪→ Q . In this way we see in particular

that the submanifold Q′ of Q has parallel second fundamental form, but is not totally

geodesic.

For this reason we again restrict the following investigations to the case

0 < t < π
4 .

Then we have Q′ = Q ∩ [U ] by Theorem 6.6(a).

In the sequel, we denote for any Riemannian manifold M by ∇M its Levi-Civita covariant

derivative. Also, if N is another Riemannian manifold and f : M → N an isometric immersion,

we denote the shape operator of f by Af and the second fundamental form of f by hf .

Q′ is a complex quadric in IP(U) in the sense of Chapter 1, therefore the results of that chapter

concerning the extrinsic geometry of complex quadrics are applicable to Q ′ as a submanifold of

IP(U) = [U ] . Because [U ] is a totally geodesic submanifold of IP(V) we thereby also understand

the geometry of Q′ as a submanifold of IP(V) . In particular we have

hQ
′↪→[U ] = hQ

′↪→IP(V) . (6.39)

But now, we wish to study the geometry of Q′ regarded as a submanifold of Q .

For this purpose we fix some A ∈ A and consider the adapted conjugation A′ of the complex

t-subspace U corresponding to A (see Theorem 6.6(a)); then we have Q = Q(A) and Q ′ =

Q(A′) . Furthermore, we consider the following objects (see also Sections 1.2 and 1.3):

• The manifolds Q̃ := Q̃(A) and Q̃′ := Q̃(A′) .

• The Hopf fibration π : S(V) → IP(V), z 7→ [z] , its horizontal space Hz at z ∈ S(V) and

the horizontal lift HzQ = (π∗|Hz)
−1(Tπ(z)Q) for z ∈ Q̃ . Analogously, we consider the

horizontal lift HzQ
′ = (π∗|Hz)

−1(Tπ(z)Q
′) for z ∈ Q̃′ .

• The tensor field C of type (1,1) on V characterized by

∀u ∈ TV :
−→
Cu = A(−→u )

and the analogous tensor field C ′ on U defined by

∀u ∈ TU :
−−→
C ′u = A′(−→u ) .
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Note that for any z ∈ Q̃ , Cz is a conjugation on TzV and in the sequel we will view

TzV as a CQ-space with the CQ-structure induced by Cz . In this regard, HzQ is a

CQ-subspace of TzV . Moreover, for any z ∈ Q̃′ , TzU is a complex t-subspace of TzV
and C ′

z is the adapted conjugation on TzU corresponding to Cz .

• The unit vector fields η , ξ̃ and ξ defined (via C ) in Section 1.3. C ′ gives rise to

analogous unit vector fields ξ̃′ := −C ′ ◦ η|Q̃′ and ξ′ := π∗ξ̃′ . The latter is a unit vector

field in the normal bundle of the inclusion Q′ ↪→ [U ] ↪→ IP(V) .

6.19 Proposition. Let p ∈ Q′ and z ∈ π−1({p}) be given. Then TpQ
′ is a complex t-subspace

of TpQ and the shape operator A
Q′↪→[U ]
ξ′(z) : TpQ

′ → TpQ
′ is an adapted conjugation for TpQ

′

corresponding to A
Q↪→IP(V)
ξ(z) ∈ A(Q, p) .

Proof. As we saw above, TzU is a complex t-subspace of TzV , and C ′
z is an adapted conjugation

for TzU corresponding to Cz . Because HzQ
′ is a C ′

z-invariant subspace of TzU and HzQ is a

Cz-invariant subspace of TzV (see Theorem 2.26) which contains HzQ
′ , it follows that HzQ

′ is

a complex t-subspace of HzQ and C ′
z|HzQ

′ is an adapted conjugation for HzQ
′ corresponding

to Cz|HzQ .

By Theorem 1.16, Cz|HzQ is conjugate to A
Q↪→IP(V)
ξ(z) under the C-linear isometry π∗|HzQ :

HzQ → TpQ , and C ′
z|HzQ

′ is conjugate to A
Q′↪→[U ]
ξ′(z) under the C-linear isometry π∗|HzQ

′ :

HzQ
′ → TpQ

′ . Thus it follows that TpQ
′ is a complex t-subspace of TpQ and that A

Q′↪→[U ]
ξ′(z) is

an adapted conjugation for TpQ
′ corresponding to A

Q↪→IP(V)
ξ(z) . �

In the next proposition we calculate the shape operator of the inclusion map Q ′ ↪→ Q .

For p ∈ Q′ we denote by P, P⊥ : TpQ → TpQ the unitary projections of TpQ onto TpQ
′

resp. onto (TpQ
′)⊥ . Also, we denote by ∇⊥ the covariant derivative of the normal bundle of

Q′ ↪→ Q .

6.20 Proposition. (a) The vector field ζ along π|Q̃′ : Q̃′ → Q′ obtained by orthogonally projecting

ξ′ onto TQ satisfies

ζ = ξ′ − cos(2t) · (ξ|Q′) (6.40)

and is therefore a normal field with respect to Q′ ↪→ Q . It satisfies ‖ζ‖ = sin(2t) and for

any ṽ ∈ HzQ
′

∇⊥
ev ζ = cos(2t) · P⊥AQ↪→IP(V)

ξ(z) π∗ṽ , (6.41)

‖∇⊥
ev ζ‖ = 1

2 sin(4t) · ‖ṽ‖ (6.42)

In particular, ζ is not a parallel field with respect to ∇⊥ .
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(b) Via ζ the fundamental geometric entities of the isometric embedding Q′ ↪→ Q can be

expressed. More specifically, we have for any v, w ∈ TpQ
′ and ν ∈⊥p(Q

′ ↪→ Q)

hQ
′↪→Q(v, w) = 〈v,AQ

′↪→[U ]
ξ′(z) w〉C · ζz (6.43)

AQ
′↪→Q

ν v = 〈ν, ζz〉C ·AQ
′↪→[U ]

ξ′(z) v , (6.44)

in particular

AQ
′↪→Q

ζ(z) v = sin(2t)2 ·AQ
′↪→[U ]

ξ′(z) v . (6.45)

Proof. For (a). For every z ∈ Q̃′ we have

〈ξ′z, ξz〉C = 〈−π∗C ′ηz,−π∗Cηz〉C = 〈A′z︸︷︷︸
∈U

, Az〉C
(6.1)
= 〈A′z, PU Az〉C

(∗)
= cos(2t) · 〈A′z,A′z〉C = cos(2t) ; (6.46)

here we used for the equals sign marked (∗) Lemma 6.8 for the complex t-subspace U of V .

Because (Tπ(z)Q)⊥,Tπ(z)IP(V) is C-spanned by the unit vector ξz , the orthogonal projection of

ξ′z onto Tπ(z)Q is given by

ζz = ξ′z − 〈ξ′z, ξz〉C · ξz
(6.46)
= ξ′z − cos(2t) · ξz ,

whence Equation (6.40) follows. It is clear by definition that ζ is tangential to Q ; moreover

Equation (6.40) shows that ζ is normal to Q′ . We also obtain from Equation (6.40) for every

z ∈ Q̃′

‖ζz‖2 = 〈ξ′z, ξ′z〉C︸ ︷︷ ︸
=1

− cos(2t) · ( 〈ξ′z, ξz〉C︸ ︷︷ ︸
=

(6.46)
cos(2t)

+ 〈ξz, ξ′z〉C︸ ︷︷ ︸
=

(6.46)
cos(2t)

) + cos(2t)2 · 〈ξz, ξz〉C︸ ︷︷ ︸
=1

= 1 − cos(2t)2 = sin(2t)2 ,

and therefore ‖ζz‖ = sin(2t) .

As a consequence of Equation (1.19) in the proof of Theorem 1.16 we have for ṽ ∈ HzQ
′

∇IP(V)
ev ξ = −π∗Cṽ

and also, because [U ] is a totally geodesic submanifold of IP(V) ,

∇IP(V)
ev ξ′ = ∇[U ]

ev ξ′ = −π∗C ′ṽ .

It follows via Equation (6.40) that

∇IP(V)
ev ζ = −π∗C ′ṽ + cos(2t) · π∗Cṽ (6.47)

holds. We have C ′ṽ ∈ HzQ
′ ⊂ HzQ and Cṽ ∈ HzQ , and therefore Equation (6.47) shows that

∇IP(V)
ev ζ ∈ TpQ holds. Therefore, the Gauss equation implies

∇Q
ev ζ = −π∗C ′ṽ + cos(2t) · π∗Cṽ
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and hence we obtain via the Weingarten equation ∇Q
ev ζ = −AQ′↪→Q

ζ(z) π∗ṽ + ∇⊥
ev ζ

∇⊥
ev ζ = P⊥∇Q

ev ζ

= −P⊥ π∗C
′ṽ︸ ︷︷ ︸

∈TpQ′

+cos(2t) · P⊥π∗Cṽ

= cos(2t) · P⊥AQ↪→IP(V)
ξ(z) π∗ṽ ,

completing the proof of Equation (6.41). We now abbreviate w := A
Q↪→IP(V)
ξ(z) π∗ṽ and w′ :=

A
Q′↪→[U ]
ξ′(z) π∗ṽ . With Proposition 6.19 and Lemma 6.8 we get

cos(2t) · w′ = Pw (6.48)

and therefore

‖∇⊥
ev ζ‖2 (6.41)

= cos(2t)2 · ‖P⊥w‖2 = cos(2t)2 · (‖w‖2 − ‖Pw‖2)

(6.48)
= cos(2t)2 · (‖w‖2 − cos(2t)2 · ‖w′‖2) = cos(2t)2 · (‖ṽ‖2 − cos(2t)2 · ‖ṽ‖2)

= (1
2 sin(4t))2 · ‖ṽ‖2 ,

which proves Equation (6.42). Because of sin(4t) 6= 0 it also follows that ζ is not a parallel

field.

For (b). Let v, w ∈ TpQ
′ be given. Because [U ] is a totally geodesic submanifold of IP(V) , we

then have

hQ
′↪→[U ](v, w) = hQ

′↪→IP(V)(v, w) = hQ
′↪→Q(v, w)︸ ︷︷ ︸
∈TpQ

+hQ↪→IP(V)(v, w)︸ ︷︷ ︸
⊥TpQ

. (6.49)

Denoting by PTpQ : TpIP(V) → TpIP(V) the orthogonal projection onto TpQ , we now obtain

hQ
′↪→Q(v, w)

(6.49)
= PTpQ(hQ

′↪→[U ](v, w))
(∗)
= 〈v,AQ

′↪→[U ]
ξ′z

w〉C · PTpQ(ξ′z) = 〈v,AQ
′↪→[U ]

ξ′z
w〉C · ζz ,

where (∗) follows from Proposition 1.19. Thus we have shown Equation (6.43).

For the proof of Equation (6.44) we abbreviate h := hQ
′↪→Q and A := AQ

′↪→Q . By definition

of the shape operator A we have

∀u, v ∈ TpQ′, ν ∈⊥p(Q
′ ↪→ Q) : 〈u,Aνv〉IR = 〈h(u, v), ν〉IR . (6.50)

Because of the parallelity of the complex structure J of Q and the fact that Q ′ is a complex

submanifold of Q , h is C-linear in both entries (see [KN69], Proposition IX.9.1, p. 175); from

this fact and Equation (6.50) one obtains by use of Equation (2.1)

∀u, v ∈ TpQ
′, ν ∈⊥p(Q

′ ↪→ Q) : 〈u,Aνv〉C = 〈h(u, v), ν〉C . (6.51)

Now, let u, v ∈ TpQ
′ and ν ∈⊥p(Q

′ ↪→ Q) be given. Then we have

〈u,Aνv〉C
(6.51)
= 〈h(u, v), ν〉C

(6.43)
=

〈
〈u,AQ

′↪→[U ]
ξ′(z) v〉C ζz , ν

〉
C

= 〈u,AQ
′↪→[U ]

ξ′(z) v〉C · 〈ζz, ν〉C
=
〈
u , 〈ν, ζz〉CAQ

′↪→[U ]
ξ′(z) v

〉
,

whence Equation (6.44) follows by variation of u . Equation (6.45) is an immediate consequence

of (6.44) because of ‖ζ‖ = sin(2t) . �
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6.21 Corollary. The submanifold Q′ of Q does not have parallel second fundamental form. In

particular, it is not totally geodesic.

Proof. Let X,Y ∈ Xc(Q
′) be parallel vector fields along some curve c : I → Q′ and c̃ : I → Q̃′

be a horizontal lift of c with respect to π . Then Theorem 1.18 (applied to Q′ ) shows that

A
Q′↪→[U ]
ξ′◦ec ◦ Y is another parallel vector field; because Q′ is a Kähler manifold, it follows that

the function s 7→ 〈Xs, A
Q′↪→[U ]
ξ′(ec(s)) Ys〉C is constant. Denoting this constant by α ∈ C , we see by

Proposition 6.20(b) that

∇⊥
∂ h

Q′↪→Q(X,Y ) = α · ∇⊥
ėc ζ (6.52)

holds.

We now fix s0 ∈ I , suppose ċ(s0) 6= 0 and choose X = Y ∈ Xc(Q
′) so that Xs0 ∈

S(V (A
Q′↪→[U ]
ξ′(ec(s0)))) holds. Then we have

|α| = |〈Xs0 , A
Q′↪→[U ]
ξ′(ec(s0))Xs0〉C| = 1

and by Equation (6.42): ‖∇⊥
ėc(s0)

ζ‖ = 1
2 sin(4t) · ‖ ˙̃c(s0)‖ 6= 0 . From Equation (6.52) we thus see

that hQ
′↪→Q(X,X) is not parallel at s0 . �

We now wish to study how far Q′ is from being a totally geodesic submanifold of Q . For this

purpose we study the behaviour of geodesics of Q which start tangential to Q ′ .

6.22 Proposition. Let p ∈ Q′ and v ∈ S(TpQ) be given, moreover we let γv : IR → Q be the

maximal geodesic of Q with γv(0) = p and γ̇v(0) = v .

Then we have:

(a) For ϕA(Q′,p)(v) 6= π
4 , γv(IR) ∩Q′ = {p} holds.

(b) For ϕA(Q′,p)(v) = π
4 we have γv(IR) ⊂ Q′ and therefore γv is also a geodesic of Q′ .

In fact, the following lemma describes the situation in more detail:

6.23 Lemma. Let T be a maximal torus of Q (i.e. a totally geodesic submanifold of Q of type

(G2, 1, 1) , see Section 5.3) with T ∩ Q′ 6= ∅ . We let p ∈ T ∩ Q′ be given. Then we have

dim(TpT ∩ TpQ′) ≤ 1 (in particular, T is not tangential to Q′ ), and in the case dim(TpT ∩
TpQ

′) = 1 :

(a) If TpT ∩ TpQ′ is not A(Q′, p)-isotropic, then we have T ∩Q′ = {p} .

(b) If TpT∩TpQ′ is A(Q′, p)-isotropic, then T∩Q′ is a circle of radius 1
2 ; more precisely we

have T ∩Q′ = γv(IR) for any v ∈ (TpT ∩ TpQ′) \ {0} . (Here γv : IR → Q again denotes

the maximal geodesic of Q with γ(0) = p and γ̇(0) = v .)
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Proof of Proposition 6.22. For (a). We base the proof of Proposition 6.22(a) on Lemma 6.23(a),

which is proven below. — It follows from Theorem 3.15(c) that there exists a maximal torus T
of Q with p ∈ T and v ∈ TpT . Because T is a complete, totally geodesic submanifold of Q ,

we then have γv(IR) ⊂ T , and because of ϕA(Q′,p)(v) 6= π
4 , Lemma 6.23(a) shows

{p} ⊂ γv(IR) ∩Q′ ⊂ T ∩Q′ = {p}

and hence γv(IR) ∩Q′ = {p} .

For (b). We have ϕA(Q′,p)(v) = π
4 and therefore by Corollary 6.12 also ϕA(Q,p)(v) = π

4 . By

Remark 5.16 (applied to the quadric Q ⊂ IP(V) ) it follows that γv : IR → Q is also a geodesic

in IP(V) . Because v is tangential to the totally geodesic submanifold [U ] of IP(V) , we see

that γv runs completely in and is a geodesic of [U ] ; moreover Remark 5.16 (this time applied

to Q′ ⊂ [U ] ) shows that γv is a geodesic of Q′ . In particular we have γv(IR) ⊂ Q′ . �

Proof of Lemma 6.23. We first note that because U and TpQ
′ are complex t-subspaces of V

resp. of TpQ (see Proposition 6.19), we have by Corollary 6.12

∀v ∈ U \ {0} : ϕA(v) ≥ t > 0 , (6.53)

∀v ∈ TpQ
′ \ {0} : ϕA(Q,p)(v) ≥ t > 0 . (6.54)

We consider the maximal flat subspace a := TpT of TpQ ; then it follows from (6.54) that

dim(a ∩ TpQ′) ≤ 1 holds: Because of dim(a) = 2 , we would otherwise have a ⊂ TpQ
′ ; because

a contains vectors of A(Q, p)-angle 0 , this would be a contradiction to (6.54).

We now suppose that dim(a ∩ TpQ′) = 1 holds and fix v ∈ S(a ∩ TpQ′) .

Then we introduce the data necessary for an explicit description of T . From Theorem 2.54 it

follows that there exists A1 ∈ A(Q, p) and an orthonormal system (v1, v2) in V (A1) so that

a = IRv1 	 IRJv2 holds. By reversing the signs of v1 , v2 and A1 where necessary (if the sign

of A1 is reversed, one also have to replace v1 by Jv2 and v2 by Jv1 ), one can ensure that A1

is adapted to v and v = cos(ϕA(Q,p)(v)) v1 + sin(ϕA(Q,p)(v)) Jv2 is a canonical representation

of v in the sense of Theorem 2.28(c).

We choose z ∈ π−1({p}) so that A
Q↪→IP(V)
ξ(z) = A1 holds (see Proposition 1.15) and put

ṽ :=
−−−−−−−−−→
(π∗|Hz)

−1(v), ṽ1 :=
−−−−−−−−−−→
(π∗|Hz)

−1(v1), and ṽ2 :=
−−−−−−−−−−→
(π∗|Hz)

−1(v2) .

Then (ṽ1, ṽ2) is an orthonormal system in V (A) , and if we denote by A′ the adapted CQ-

structure for the complex t-subspace U ⊂ V , we have

ϕA′(ṽ) = ϕA(Q′,p)(v) (6.55)

(because π∗|HzQ
′ : (HzQ

′,A′) → (TpQ
′,A(Q′, p)) is a CQ-isomorphism).

Further, we put

Ṽ1 := IR(ReA z) 	 IRṽ1 and Ṽ2 := IR(ImA z) 	 IRṽ2
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and consider the map

f̃ : Sr(Ṽ1) × Sr(Ṽ2) → Q̃, (x, y) 7→ x+ Jy ,

where we abbreviate r := 1/
√

2 . By Proposition 5.11, f̃ is an isometric embedding onto

T̃ := f̃(S(Ṽ1) × S(Ṽ2)) , and π|T̃ : T̃ → T is a two-fold covering map onto the maximal torus T
with

∀ (x, y), (x′, y′) ∈ Sr(Ṽ1)×Sr(Ṽ2) :
(
π(f̃(x, y)) = π(f̃(x′, y′)) ⇐⇒ (x, y) = ±(x′, y′)

)
. (6.56)

We further put

W̃ := Ṽ1 	 J(Ṽ2) = spanIR{ReA z, J ImA z, ṽ1, J ṽ2} , (6.57)

note that T̃ ⊂ W̃ holds. We have spanIR{ReA z, J ImA z} = spanIR{z,Az} and

spanIR{ṽ1, J ṽ2} = spanIR{ṽ, Aṽ} (because of ϕA(z), ϕA(ṽ) 6= 0 , see (6.53)) and therefore

W̃ = spanIR{z,Az, ṽ, Aṽ} . (6.58)

We now show

W̃ ∩ U = IRz ⊕ IRṽ . (6.59)

By Equation (6.58) z, ṽ ∈ W̃ holds, and we have z ∈ Q̃′ ⊂ U and ṽ ∈
−−−→
HzQ

′ ⊂ U . This

shows “⊃” in Equation (6.59). Conversely, let u ∈ W̃ ∩ U be given. Equation (6.58) shows

that there exist a, b, c, d ∈ IR so that u = az + bAz + cṽ + dAṽ holds. By the inclusion “⊃” of

Equation (6.59) we also have

u1 := az + cṽ ∈ W̃ ∩ U

and consequently

W̃ ∩ U 3 u2 := u− u1 = bAz + dAṽ .

Also by the inclusion “⊃” of Equation (6.59) we have Au2 = bz + dṽ ∈ W̃ ∩ U and therefore

u3 := u2 +Au2 ∈ W̃ ∩ U and u4 := u2 −Au2 ∈ W̃ ∩ U .

We have Au3 = u3 and thus u3 ∈ V (A) . If u3 6= 0 were the case, we would therefore have

ϕA(u3) = 0 in contradiction to (6.53). Hence we have u3 = 0 and by the analogous argument

also u4 = 0 . But u3 = u4 = 0 implies u2 = 0 and therefore b = d = 0 . This shows

u = az + cṽ ∈ IRz ⊕ IRṽ . Thus Equation (6.59) is shown.

We have T̃ ⊂ S(W̃ ) and Q̃′ ⊂ S(U) ; therefore it follows from Equation (6.59) that

T̃ ∩ Q̃′ ⊂ S(W̃ ∩ U) = S(IRz ⊕ IRṽ) (6.60)

holds.

For (a). We suppose that a∩TpQ′ is not A(Q′, p)-isotropic. Because this space is of dimension

1 and we have v ∈ a ∩ TpQ′ , we then have ϕA(Q′,p)(v) 6= π
4 and therefore by Equation (6.55)

also ϕA′(ṽ) 6= π
4 . We will now show

T̃ ∩ Q̃′ = {±z} ; (6.61)

because of (6.56), T ∩Q′ = {p} then follows immediately.
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For the proof of (6.61): It is clear that ±z ∈ T̃ ∩ Q̃′ holds. Conversely, we suppose that

u ∈ T̃ ∩ Q̃′ is given. Because of (6.60) there then exist a, b ∈ IR with a2 + b2 = 1 so that

u = az + bṽ holds. Because of u ∈ Q̃′ , we have

0 = 〈u,A′u〉C = a2 〈z,A′z〉C + 2ab 〈ṽ, A′z〉C + b2 〈ṽ, A′ṽ〉C .

We have 〈z,A′z〉C = 0 because of z ∈ Q̃′ and 〈ṽ, A′z〉C = 0 because of ṽ ∈
−−−→
HzQ

′ =

(spanA′{z})⊥,U , also we have 〈ṽ, A′ṽ〉C 6= 0 because of ϕA′(ṽ) 6= π
4 . Thus we obtain b = 0 ,

and hence u = ±z . This completes the proof of Equation (6.61).

For (b). We now suppose that a∩TpQ′ is an A(Q′, p)-isotropic subspace of TpQ
′ ; in particular

v is A(Q′, p)-isotropic, and therefore ṽ is A′-isotropic. We now show

T̃ ∩ Q̃′ = S(IRz ⊕ IRṽ) . (6.62)

Indeed, the inclusion “⊂” of this equality has already been shown as (6.60). Conversely, we let

u ∈ S(IRz ⊕ IRṽ) be given, say u = az + bṽ with a, b ∈ IR and a2 + b2 = 1 . Then we have

〈u,A′u〉C = a2 〈z,A′z〉C + 2ab 〈ṽ, A′z〉C + b2 〈ṽ, A′ṽ〉C .

As in the case (a), we have 〈z,A′z〉C = 〈ṽ, A′z〉C = 0 , but now we also have 〈ṽ, A′ṽ〉C = 0

because ṽ is A′-isotropic. Therefore we have 〈u,A′u〉C = 0 and hence u ∈ Q̃′ .

In particular we have u ∈ Q̃ , and therefore the vectors

x := ReA(u) = a ReA(z) + b ev1√
2
∈ Ṽ1 and y := ImA(u) = a ImA(z) + b ev2√

2
∈ Ṽ2

are of length r = 1/
√

2 by Proposition 2.23(b). Hence we have u = x + Jy = f̃(x, y) ∈ T̃ ,

completing the proof of Equation (6.62).

From Equation (6.62) we obtain

T ∩Q′ = π(T̃) ∩ π(Q̃′) = π(T̃ ∩ Q̃′) = π(S(IRz ⊕ IRṽ)) (6.63)

(note that Q̃′ is saturated with respect to π ). We now show

π(S(IRz ⊕ IRṽ)) = γv(IR) . (6.64)

Indeed, by application of (6.15) to the complex t-subspace TpQ
′ of TpQ we have

ϕA(Q,p)(v) = π
4 . (6.65)

Proposition 5.15 thus shows

∀s ∈ IR : γv(s) = π( cos(s) z + sin(s) ṽ ) , (6.66)

whence Equation (6.64) follows.

From Equations (6.63) and (6.64) we obtain T∩Q′ = γv(IR) . Also because of Equation (6.65),

Proposition 5.18 shows that the unit speed geodesic γv is closed and of minimal period π =

3.14 . . . , and hence T ∩Q′ is a circle of radius 1
2 . �
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Chapter 7

Families of congruent submanifolds

Among the totally geodesic submanifolds of an m-dimensional complex quadric Q (which we

classified in Chapters 4 and 5), there are two series of families of congruent submanifolds which

are of particular interest: the family of k-dimensional projective subspaces ( k ≤ m
2 ) contained

in Q (corresponding to the type (I1, k) ) and the family of k-dimensional complex quadrics

( k < m ) which are totally geodesic in Q (corresponding to the type (G1, k) ).

The primary subject of the present chapter is to give these families the structure of a Riemannian

manifold and to study them, in particular as submanifolds of the families of all k-dimensional

projective subspaces resp. complex quadrics contained in the ambient projective space IPm+1 .

A large part of these studies is focused on questions from the theory of reductive homogeneous

spaces and of symmetric spaces, see Appendix A.1. In particular, we show in a general setting

that a family of congruent manifolds can be seen as a naturally reductive homogeneous space.

In the specific cases mentioned above, we investigate whether the reductive structure of the

families is induced by a symmetric structure, and whether the families in Q are naturally

reductive homogeneous subspaces of the corresponding families in IPm+1 .

In Section 7.1, fundamental facts on families of congruent homogeneous subspaces in Riemannian

homogeneous spaces in general are presented. Section 7.2 is concerned with results on congruence

families of projective subspaces and of quadrics in a projective space, and Section 7.3 finally

discusses the corresponding families of projective subspaces and of quadrics which are contained

in a fixed quadric Q .

The following notation should be kept in mind: If M1,M2,M are sets, f : M1 ×M2 → M is

a map and p0 ∈ M1 , q0 ∈ M2 holds, we consider the maps fp0 : M2 → M, q 7→ f(p0, q) and

f q0 : M1 →M, p 7→ f(p, q0) .

167
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7.1 Families of submanifolds in general

Let M be a connected Riemannian homogeneous space and G be a Lie group which acts on M

transitively and via isometries by the differentiable action ϕ : G×M →M . Moreover, let N0 be

a connected, closed homogeneous subspace of M , i.e. the group K := { g ∈ G |ϕg(N0) = N0 }
acts transitively on N0 . In this situation, K equals the intersection

⋂
p∈N0

(ϕp)−1(N0) and is

therefore closed in G , hence a Lie subgroup of G (see [Var74], Theorem 2.12.6, p. 99). Because

N0 is closed in M , it follows therefrom that N0 is a regular submanifold of M ([Var74],

Theorem 2.9.7, p. 80).

In this situation we call the set

Fϕ(N0,M) := {ϕg(N0) | g ∈ G }

of submanifolds of M the ϕ-family of submanifolds induced by N0 . In the case where G is

the isometry group of M and ϕ its canonical action on M , we also speak of the congruence

family F(N0,M) of submanifolds induced by N0 .

7.1 Proposition. There is a unique differentiable structure on Fϕ(N0,M) which is for any N ∈
Fϕ(N0,M) characterized by the fact that ψN : G → Fϕ(N0,M) is a surjective submersion.

With respect to this differentiable structure, also the transitive action ψ : G × Fϕ(N0,M) →
Fϕ(N0,M), (g,N) 7→ ϕg(N) is differentiable.

Proof. Because K is closed in G , the quotient G/K carries the structure of a differen-

tiable manifold ([Var74], Theorem 2.9.4, p. 77), which we transfer onto Fϕ(N0,M) by the

G-equivariant bijection G/K → Fϕ(N0,M), g · K 7→ ψN0(g) . With respect to this differen-

tiable structure, ψ is differentiable and ψN0 : G → Fϕ(N0,M) is a surjective submersion (see

[Var74], Lemma 2.9.2, p. 76).

If now N ∈ F(N0,M) is given, there exists g0 ∈ G so that N = ψ(g0, N0) holds; we then

have ψN = ψN0 ◦ Rg0 with the diffeomorphism Rg0 : G → G, g 7→ g · g0 , and therefore also

ψN : G→ Fϕ(N0,M) is a surjective submersion.

It is clear that there can be only one differentiable structure on Fϕ(N0,M) so that ψN : G →
Fϕ(N0,M) is a surjective submersion for some given N ∈ Fϕ(N0,M) . �

Proposition 7.1 shows that Fϕ(N0,M) is a homogeneous G-space. We now wish to construct

the structure of a naturally reductive homogeneous space (see Section A.1) on Fϕ(N0,M) . For

this purpose, let us denote the Lie algebras of G and K by g and k , respectively.

We consider the more special situation that the Lie group homomorphism τ : G→ I(M), g 7→
ϕg is a covering map onto an open subgroup of I(M) (meaning that its linearization τL : g →
i(M) is an isomorphism of Lie algebras) and that M is a Riemannian symmetric G-space of

compact type (see Section A.3 and Definition A.4), meaning in particular that the Killing form

κ : g × g → IR, (X,Y ) 7→ tr(ad(X) ◦ ad(Y ))

of g is negative definite.
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7.2 Proposition. With m := k⊥,κ = {X ∈ g | ∀Y ∈ k : κ(X,Y ) = 0 } , (N0,m) is a reduc-

tive datum for the homogeneous G-space Fϕ(N0,M) (see Appendix A.1) and −κ induces a

G-invariant Riemannian metric on Fϕ(N0,M) . In this way Fϕ(N0,M) becomes a naturally

reductive homogeneous G-space.

Proof. As κ is Ad(G)-invariant and k is Ad(K)-invariant, m is an Ad(K)-invariant subspace

of g satisfying g = k	m , therefore (N0,m) is a reductive datum for Fϕ(N0,M) . The positive

definite bilinear form −κ|(m × m) induces a G-invariant metric on Fϕ(N0,M) because it is

Ad(K)-invariant; thereby Fϕ(N0,M) becomes a Riemannian homogeneous G-space.

Because ad(X) : g → g is skew-symmetric with respect to κ for any X ∈ g , we have

∀X,Y,Z ∈ m : κ([Z,X], Y ) + κ(X, [Z, Y ]) = 0 ;

because k and m are orthogonal with respect to κ ,

∀X,Y,Z ∈ m : κ([Z,X]m, Y ) + κ(X, [Z, Y ]m) = 0

follows, where Xm denotes the projection of X ∈ g onto m along k . The latter formula shows

that Fϕ(N0,M) is naturally reductive; see [KN69], Theorem X.3.3(2), p. 201. �

7.3 Remark. (a) In general, Fϕ(N0,M) does not become a symmetric space in this way, as the

examples of Theorems 7.5 and 7.11 will show.

(b) Put G′ := τ(G) , by hypothesis this is an open subgroup of I(M) which still acts transi-

tively on M , and denote by ϕ′ : G′ ×M → M the canonical action. Then the previous

constructions can also be applied to (G′, ϕ′) in the place of (G,ϕ) , giving rise to a natu-

rally reductive space Fϕ
′
(N0,M) .

In this setting, Fϕ(N0,M) and Fϕ
′
(N0,M) coincide as Riemannian manifolds. Denoting

this manifold by F , (idF, τ) is an almost-isomorphism of naturally reductive homogeneous

spaces from the G-space Fϕ(N0,M) onto the G′-space Fϕ
′
(N0,M) (see Section A.1).

Proof. It is clear that Fϕ(N0,M) and Fϕ′

(N0,M) coincide as sets, and that (idF, τ ) is an almost-

isomorphism of homogeneous spaces from the G-space Fϕ(N0,M) onto the G′-space Fϕ′

(N0,M) . Because

of Proposition A.1(b), the latter fact shows in particular that Fϕ(N0,M) and Fϕ′

(N0,M) coincide as

differentiable manifolds. Denoting the objects belonging to (G′, ϕ′) by appending a prime (′) to the symbol

for the corresponding object belonging to (G,ϕ) , we now have τ−1(K′) = K , therefore τ |K : K → K ′ is

a covering map of Lie groups, and hence

τL(k) = k
′ (7.1)

holds. Because the Lie algebra isomorphism τL : g → i(M) satisfies

∀X,Y ∈ g : κ′(τL(X), τL(Y )) = κ(X,Y ) , (7.2)

it follows from (7.1) that also τL(m) = m′ holds, and therefore (idF, τ ) is an almost-isomorphism of

reductive homogeneous spaces. Now Equation (7.2) also shows that the Riemannian metrics on Fϕ(N0,M)

and on Fϕ′

(N0,M) are equal, and therefore (idF, τ ) is an almost-isomorphism of naturally reductive

homogeneous spaces. �



170 Chapter 7. Families of congruent submanifolds

7.2 Congruence families in the complex projective space

From the point of view of algebraic geometry, the simplest submanifolds of the complex projective

space are those defined by linear equations, namely the projective subspaces, and those defined

by quadratic equations, namely the complex quadrics. In the present section we investigate

the congruence families induced in a complex projective space by these submanifolds. It will

turn out that the congruence families induced by complex projective spaces are isomorphic to

complex Grassmannians and therefore not very interesting. However, the congruence families

induced by complex quadrics provide more interesting examples.

We introduce some notations:

Let V be a unitary vector space of complex dimension n ≥ 2 . As usual, we denote the complex

structure v 7→ i · v of V by J , and the complex inner product of V by 〈 · , · 〉C . The latter

induces the real inner product 〈 · , · 〉IR := Re(〈 · , · 〉C) and thereby the norm ‖v‖ . We also

consider the Hopf fibration π : S(V) → IP(V) , this is a Hermitian submersion.

For every k ∈ {1, . . . , n − 1} , let Gk(V) denote the Grassmannian manifold of k-dimensional

complex subspaces of V , which is known to be a Hermitian symmetric space of type AIII (see

[Hel78], p. 518). For every V ∈ Gk(V) , we put [V ] := {π(v) | v ∈ S(V ) } , this being a (k − 1)-

dimensional projective subspace in IP(V) . If, on the other hand, Λ is a (k − 1)-dimensional

projective subspace of IP(V) , then Λ̂ := {λ · v |λ ∈ IR, v ∈ π−1(Λ) } is an element of Gk(V) .

As before, we use the notation B ∈ Ih(IP(V)) for the holomorphic isometry corresponding to

B ∈ U(V) by B ◦ π = π ◦ (B|S(V)) . Every holomorphic isometry of IP(V) is obtained in this

way. If G is a subgroup of U(V) , we put G := {B |B ∈ G } ; this is a subgroup of the group

Ih(IP(V)) of all holomorphic isometries of IP(V) .

We note that SU(V) acts transitively and via holomorphic isometries on IP(V) by the action

ϕ : SU(V) × IP(V) → IP(V), (B, p) 7→ B(p) ; moreover IP(V) is a Hermitian symmetric SU(V)-

space of compact type and τ : SU(V) → I(IP(V)), B 7→ ϕB is a covering map onto Ih(IP(V)) =

I(IP(V))0 = SU(V) . It will turn out that already SU(V) acts transitively on the congruence

families we consider in the sequel, and we can therefore consider these congruence families as

naturally reductive homogeneous SU(V)-spaces in the way described in Section 7.1.

Projective subspaces in IP(V) . We fix k ∈ {1, . . . , n−1} . The set of k-dimensional projec-

tive subspaces of IP(V) forms a congruence family in IP(V) , which we denote by F(IPk, IP(V)) .

Because SU(V) acts transitively and by holomorphic isometries on F(IPk, IP(V)) via the action

ψ : (B,Λ) 7→ B(Λ) , we consider F(IPk, IP(V)) as a naturally reductive homogeneous SU(V)-

space in the way explained above.

As the following theorem shows, the congruence family F(IPk, IP(V)) is isomorphic to the com-

plex Grassmannian Gk+1(V) ; of course this fact completely describes the geometry of this

family.
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7.4 Theorem. The map

θ : Gk+1(V) → F(IPk, IP(V)), V 7→ [V ] (7.3)

is an isomorphism of naturally reductive homogeneous SU(V)-spaces.

Thus we see that by transferring the Hermitian symmetric structure of Gk+1(V) onto

F(IPk, IP(V)) via θ , F(IPk, IP(V)) becomes a Hermitian symmetric SU(V)-space (of type AIII

as in [Hel78], p. 518 and of complex dimension (k + 1)(n− k − 1) ) whose symmetric structure

is compatible with its original reductive structure.

Proof. It is clear that θ is SU(V)-equivariant, and therefore an isomorphism of homogeneous

SU(V)-spaces; in particular the isotropy groups of the SU(V)-actions on Gk+1(V) and on

F(IPk, IP(V)) at corresponding points coincide. Because for both Gk+1(V) and F(IPk, IP(V)) ,

the reductive structure at some point is the orthocomplement of the Lie algebra of the isotropy

group at that point with respect to the Killing form, it follows that θ is an isomorphism of re-

ductive homogeneous SU(V)-spaces. Because also the Riemannian metric of both spaces is the

one induced by the Killing form, we see that θ is in fact an isomorphism of naturally reductive

homogeneous SU(V) spaces. The remaining statements are obvious. �

Complex quadrics in IP(V) . We wish to study the set of k-dimensional (symmetric) com-

plex quadrics (in the sense of Definition 6.1(a)) contained in IP(V) ; it will turn out that this

set is a congruence family in IP(V) .

7.5 Theorem. Let k ∈ {1, . . . , n− 2} .

(a) The set of k-dimensional complex quadrics in IP(V) is a congruence family, which we

denote by F(Qk, IP(V)) . Already SU(V) acts transitively on F(Qk, IP(V)) .

(b) In the way described in Section 7.1, F(Qk, IP(V)) is a naturally reductive homogeneous

SU(V)-space. Its dimension is 2(n− 1)(k + 2) − 1
2(3k + 4)(k + 1) .

(c) (i) In the case k < n − 2 , the naturally reductive structure on F(Qk, IP(V)) is not

induced by a symmetric structure.

(ii) In the case k = n− 2 , we now regard F(Qn−2, IP(V)) as a naturally reductive homo-

geneous Ih(IP(V))-space via the construction of Section 7.1. This naturally reductive

homogeneous structure on F(Qn−2, IP(V)) is induced by a symmetric structure and

in this way F(Qn−2, IP(V)) is an irreducible Riemannian symmetric space of type AI;

this means that its universal cover is isomorphic to SU(n)/SO(n) , see also [Hel78],

p. 518.

The naturally reductive homogeneous structures induced on F(Qn−2, IP(V)) by

Ih(IP(V)) and by SU(V) are “isomorphic” in the way described in Remark 7.3(b).

7.6 Remark. The Riemannian symmetric space F(Qn−2, IP(V)) of (c)(ii) cannot be equipped with

a complex structure so that it becomes a Hermitian symmetric space, see [Hel78], p. 518.



172 Chapter 7. Families of congruent submanifolds

For the proof of Theorem 7.5 we will use a more efficient way to describe k-dimensional complex

quadrics in IP(V) than the one provided by Definition 6.1(a). For this purpose we introduce

the concept of a partial conjugation:

7.7 Definition. A partial conjugation on V is an anti-linear map A : V → V which is self-adjoint

with respect to 〈·, ·〉IR and which satisfies A3 = A . If A is a partial conjugation on V , we put

V (A) := Eig(A, 1) .

7.8 Proposition. (a) Let A be a partial conjugation on V . Then the real rank of A is necessarily

even, A(V) =: U and ker(A) are complex, A-invariant subspaces of V , we have V =

ker(A) 	 U , and A|U : U → U is a conjugation on U in the sense of Section 2.1.

(b) An anti-linear map A : V → V which is self-adjoint with respect to 〈·, ·〉IR is a partial

conjugation on V if and only if A|A(V) : A(V) → A(V) is a conjugation on A(V) in the

sense of Section 2.1.

In the sequel, we denote the set of partial conjugations on V which are of real rank 2k by

Conk(V) ; we have Conn(V) = Con(V) by Proposition 7.8(b). When we wish to emphasize the

difference between the more general concept of the partial conjugations of Definition 7.7 and

the concept of the conjugations of Section 2.1, we call the latter full conjugations.

Proof of Proposition 7.8. For (a). Because A is self-adjoint with respect to 〈·, ·〉IR , A is real diagonalizable and

the eigenspaces of A are pairwise orthogonal; because of the equation A3 = A the only possible eigenvalues of

A are −1, 0, 1 . Therefore we have

V = Eig(A, 0) 	 Eig(A, 1) 	 Eig(A,−1) . (7.4)

Moreover, because A is anti-linear, we have

∀λ ∈ IR : Eig(A,−λ) = J(Eig(A, λ)) . (7.5)

It follows from Equation (7.5) that ker(A) = Eig(A, 0) is a complex subspace of V ; clearly this space is A-

invariant. From Equation (7.4) it follows that

U := A(V) = Eig(A, 1) 	 Eig(A,−1) (7.6)

and V = ker(A) 	 U holds. We see from Equation (7.6) that U is A-invariant; U is complex because of

Equation (7.5). Finally, (7.6) also shows that A|U is an anti-linear isomorphism on U , hence the equation

A3 = A implies (A|U)2 = idU , whence it follows by application of Proposition 2.3(h) to A|U that this map is a

full conjugation on U .

For (b). Let A : V → V be an anti-linear map which is self-adjoint with respect to 〈·, ·〉IR . It has already been

shown in (a) that if A is a partial conjugation on V , then A|A(V) is a full conjugation on U := A(V) .

Conversely, we now suppose that A|U is a full conjugation on U . Then we have to prove that A is a partial

conjugation on V , and for this it only remains to show that A3 = A holds. Because A is anti-linear and self-

adjoint, ker(A) and U are complex, A-invariant subspaces of V and we have V = ker(A) 	 U . For any given

v ∈ V there thus exist unique vker ∈ ker(A) and vU ∈ U so that v = vker + vU holds, and we have

A3v = A2(Avker +AvU ) = A2(AvU|{z}
∈U

)
(∗)
= AvU = Avker +AvU = Av ,

here the equals sign marked (∗) follows from the fact that A|U : U → U is a full conjugation. Thus we have

shown A3 = A . �
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In generalization of the corresponding definitions from Sections 1.1 and 1.2 we define for any

A ∈ Conk+2(V) (where k ≥ 1 ):

Q̂(A) := { z ∈ A(V) \ {0} | 〈z,Az〉C = 0 } , Q̃(A) := Q̂(A) ∩ S(V) and Q(A) := π(Q̃(A)) .

Q(A) is a k-dimensional complex quadric of IP(V) (in the sense of Definition 6.1(a)) and

obviously, every k-dimensional complex quadric in IP(V) is obtained in this way.

By generalization of Propositions 1.10 and 1.11 we have:

7.9 Proposition. (a) Let A ∈ Conk+2(V) and B ∈ U(V)∪̇U(V) be given.18 Then we have A′ :=

BAB−1 ∈ Conk+2(V) , Q̂(A′) = B(Q̂(A)) , Q̃(A′) = B(Q̃(A)) and Q(A′) = B(Q(A)) .

Moreover,

Conk+2(V) = {BAB−1 |B ∈ U(V) } (7.7)

holds.

(b) For A1, A2 ∈ Conk+2(V) , we have

Q(A1) = Q(A2) ⇐⇒ ∃λ ∈ S1 : A2 = λ ·A1 .

Proof. For (a). Let A ∈ Conk+2(V) and B ∈ U(V)∪̇U(V) be given. Then A′ := BAB−1 is anti-linear, self-

adjoint with respect to 〈·, ·〉IR and of real rank 2(k + 2) . Moreover, we have (A′)3 = (BAB−1)3 = BA3B−1 =

BAB−1 = A′ , and therefore A′ ∈ Conk+2(V) . The statements on bQ(A′) , eQ(A′) and Q(A′) are now obvious.

For Equation (7.7): The inclusion “⊃” has already been shown. For the converse inclusion, let A,A′ ∈ Conk+2(V)

be given. We choose orthonormal bases (a1, . . . , ak+2) of V (A) and (a′1, . . . , a
′
k+2) of V (A′) , as well as unitary

bases (ak+1, . . . , an) of ker(A) and (a′k+1, . . . , a
′
n) of ker(A′) . Then B := (a1, . . . , an) and B′ := (a′1, . . . , a

′
n)

are unitary bases of V , and if B ∈ U(V) denotes the unitary map which transforms B into B′ , we have

A′ = BAB−1 .

For (b). The implication “⇐=” is obvious. For the opposite implication, let A1, A2 ∈ Conk+2(V) be given so that

Q(A1) = Q(A2) and therefore bQ(A1) = bQ(A2) holds. By Proposition 2.27 there exist bases of A1(V) resp. of

A2(V) which consist of elements of bQ(A1) resp. of bQ(A2) , and therefore the hypothesis bQ(A1) = bQ(A2) implies

A1(V) = A2(V) =: U . Q(A1|U) = Q(A2|U) is a (symmetric) complex quadric in IP(U) in the sense of Chapter 1

and therefore Proposition 1.10 shows that there exists λ ∈ S1 so that A2|U = λ · A1|U holds. We also have

A1|U
⊥ = 0 = A2|U

⊥ and therefore A2 = λ ·A1 follows. �

Proof of Theorem 7.5. For (a). We denote the set of k-dimensional complex quadrics in IP(V)

by Qk and let Q ∈ Qk be given. Then there exists A ∈ Conk+2(V) so that Q = Q(A) holds.

We will now show

{ f(Q) | f ∈ I(IP(V)) } ⊂ Qk ⊂ {B(Q) |B ∈ SU(V) } . (7.8)

Because of SU(V) = Ih(IP(V)) ⊂ I(IP(V)) it then follows that both inclusions in (7.8) are in fact

equalities. Thus we see that I(IP(V)) acts transitively on Qk , therefore Qk is a congruence

family, and that already SU(V) acts (via B 7→ B ) transitively on this family.

For the proof of the first inclusion in (7.8), we let f ∈ I(IP(V)) be given. f is either holomorphic

or anti-holomorphic, moreover there exists a unitary or anti-unitary transformation B : V → V

18Remember that U(V) denotes the set of anti-unitary transformations of V .
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so that f = B holds. Then we have BAB−1 ∈ Conk+2(V) by Proposition 7.9(a) and therefore

f(Q) = B(Q) = Q(BAB−1) ∈ Qk .

For the proof of the second inclusion in (7.8), we let Q′ ∈ Qk be given. Then there exists

another partial conjugation A′ ∈ Conk+2(V) so that Q′ = Q(A′) holds. By Equation (7.7)

in Proposition 7.9 it follows that there exists B ∈ U(V) with A′ = BAB−1 . If we choose

λ ∈ S1 so that det(λB) = 1 and therefore λB ∈ SU(V) holds, we have λB(Q) = B(Q) =

Q(BAB−1) = Q(A′) = Q′ , and therefore Q′ is a member of the right-hand set in (7.8).

Henceforth, we will denote the congruence family Qk by F(Qk, IP(V)) .

For (b). It follows from the introductory remarks of the present section and the fact that already

SU(V) acts transitively on F(Qk, IP(V)) (see (a)) that F(Qk, IP(V)) can be equipped with the

structure of a naturally reductive homogeneous SU(V)-space in the way described in Section 7.1.

Again we fix Q ∈ F(Qk, IP(V)) , say Q = Q(A) with A ∈ Conk+2(V) . Then the isotropy group

K of the action of SU(V) on F(Qk, IP(V)) is in block matrix notation with respect to the

decomposition V = U 	 ker(A) with U := A(V) given by

K =

{ (
λBC

1 0

0 B2

)∣∣∣∣∣
B1 ∈ O(V (A)), B2 ∈ U(ker(A)), λ ∈ S1

λk+2 det(B1) det(B2) = 1

}
. (7.9)

Indeed, suppose that B ∈ K is given. Then we have B ∈ SU(V) and Q(BAB−1) = B(Q) =

Q = Q(A) ; by Proposition 7.9(b) it follows that there exists λ ∈ S1 so that BAB−1 = λ2A

holds. We then have

B(V (A)) = V (BAB−1) = V (λ2A) = λV (A) ,

whence it follows that B1 := (λ−1B)|V (A) ∈ O(V (A)) holds. Moreover, it follows that B

leaves U and therefore also U⊥ = ker(A) invariant; thus we have B2 := B| ker(A) ∈ U(ker(A))

and clearly B =
(
λBC

1 0
0 B2

)
holds. Finally, because of B ∈ SU(V) we have

1 = det(B) = λk+2 · det(BC
1 ) · det(B2) = λk+2 · det(B1) · det(B2) .

Thus, the inclusion “⊂” of Equation (7.9) is shown; the inclusion “⊃” is obvious.

It should be noted that in the right-hand side of Equation (7.9), λ ∈ S1 can attain only discrete

values for each pair (B1, B2) . Therefore we have

dimK = dimO(V (A)) + dimU(ker(A)) = 1
2(k + 2)(k + 1) + (n− k − 2)2

and hence

dimF(Qk, IP(V)) = dimSU(V) − dimK =
(
n2 − 1

)
−
(

1
2 (k + 2)(k + 1) + (n− k − 2)2

)

= 2(n− 1)(k + 2) − 1
2(3k + 4)(k + 1) .

For (c)(i). We first show that the Lie algebra k of K is (again in block matrix notation with

respect to the decomposition V = U 	 ker(A) ) given by

k =

{(
XC + α(Y ) J |U 0

0 Y

)∣∣∣∣∣X ∈ o(V (A)), Y ∈ u(ker(A))

}
(7.10)
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with the IR-linear form α : u(ker(A)) → IR, Y 7→ i
k+2 trC Y (note that Y ∈ u(ker(A)) is

anti-Hermitian and therefore we have trC Y ∈ iIR ).

For the proof of Equation (7.10) we first note that the right-hand side k̃ of Equation (7.10) is a

linear subspace of su(V) whose dimension equals dim(K) ; therefore it suffices to show k̃ ⊂ k ,

and for this it is in turn sufficient to prove exp(k̃) ⊂ K , where exp is the usual exponential

map. For this we let Z ∈ k̃ be given, say Z =
(
XC+α(Y ) J |U 0

0 Y

)
with X ∈ o(V (A)) and

Y ∈ u(ker(A)) , and put B := exp(Z) . Along with Z , B leaves U and ker(A) invariant. We

have

exp(α(Y ) J |U) =

∞∑

k=0

1
k! α(Y )k (J |U)k

=

∞∑

k=0

(−1)k

(2k)! α(Y )2k idU +

∞∑

k=0

(−1)k

(2k+1)! α(Y )2k+1 (J |U)

= cos(α(Y )) idU + sin(α(Y )) (J |U) = eiα(Y ) idU

and therefore

B|U = exp(Z|U) = exp(XC +α(Y )J |U)
(∗)
= exp(XC) ·exp(α(Y )J |U) = eiα(Y ) ·exp(X)C = λ ·BC

1

with λ := eiα(Y ) ∈ S1 and B1 := exp(X) ∈ O(V (A)) ; here the equals sign marked (∗) follows

from the fact that the endomorphisms XC and α(Y )J |U of U commute. Moreover, we have

B|(kerA) = exp(Z| kerA) = exp(Y ) =: B2 ∈ U(kerA)

and

λk+2 det(B1) det(B2) = e(k+2)iα(Y ) etr(X) etr(Y ) = 1

by the definition of the linear form α and the fact that we have tr(X) = 0 because of X ∈
o(V (A)) . It follows that exp(Z) ∈ K holds, compare Equation (7.9).

Let now m = k⊥,κ be the reductive structure of F(Qk, IP(V)) at the point Q as described in

Proposition 7.2(a). Then we have m = m1 ⊕ m2 with

m1 :=

{(
0 −Z∗

Z 0

)∣∣∣∣∣ Z : U → kerA complex-linear

}
(7.11)

and m2 :=

{(
J ◦XC 0

0 0

)∣∣∣∣∣X ∈ End+(V (A)), trX = 0

}
.

For the proof of this statement, we first note that m1 ∩ m2 = {0} , m1 ⊕ m2 ⊂ su(V) and

dim(k) + dim(m1) + dim(m2) = dim(su(V)) holds; therefore it suffices to show that m1 and m2

are orthogonal to k with respect to the Killing form κ of su(V) . For this purpose we choose

an orthonormal basis (a1, . . . , ak+2) of V (A) . Then (a1, . . . , ak+2) also is a unitary basis of

U , which we expand to a unitary basis (a1, . . . , an) of V . We have (see [IT91], p. 60)

∀Z1, Z2 ∈ su(V) : κ(Z1, Z2) = (−2n) ·
n∑

ν=1

〈Z1aν , Z2aν〉IR (7.12)
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Because the elements of k leave the perpendicular, complementary spaces U and kerA in-

variant, whereas the elements of m1 interchange these spaces, it immediately follows from

Equation (7.12) that m1 is κ-orthogonal to k . Now let Z1 =
(
XC+α(Y ) J |U 0

0 Y

)
∈ k (with

X ∈ o(V (A)) and Y ∈ u(ker(A)) ) and Z2 =
(
J◦ eXC 0

0 0

)
∈ m2 (with X̃ ∈ End+(V (A)) and

tr X̃ = 0 ) be given. Then we have by Equation (7.12):

− 1
2n · κ(Z1, Z2) =

n∑

ν=1

〈Z1aν , Z2aν〉IR

=
k+2∑

ν=1

(
〈Xaν︸︷︷︸
∈V (A)

, JX̃aν︸ ︷︷ ︸
∈JV (A)

〉IR + 〈α(Y ) Jaν , JX̃aν〉IR
)

= α(Y ) · tr X̃ = 0 .

This completes the proof that m2 is κ-orthogonal to k .

We now consider the endomorphisms D,E : V → V given by

Da1 = Ja1, Da2 = −Ja2, Daj = 0 for j ≥ 3

and E = a1 ∧ ak+3 , i.e.

Ea1 = −ak+3, Eak+3 = a1, Eaj = 0 for j ∈ {2, . . . , n} \ {k + 3} ,

respectively. We have D ∈ m2 ⊂ m and E ∈ m1 ⊂ m . However, a simple calculation shows

[D,E]a1 = Jak+3 and therefore [D,E] 6∈ k . Thus, we have [m,m] 6⊂ k , showing that the reduc-

tive structure of F(Qk, IP(V)) can not be induced by a symmetric structure on F(Qk, IP(V)) .

For (c)(ii). In the case k = n− 2 , we have kerA = {0} and hence A is a full conjugation on

V . From Equation (7.9) and Proposition 2.17(a) we see that

K = {λB ∈ SU(V) |B ∈ Auts(A), λ ∈ S1, λn = det(B) } (7.13)

holds, where A := S1 · A is the CQ-structure induced by A ; therefrom it follows that we have

K0 = Auts(A)0 .

We now regard F(Qn−2, IP(V)) as an Ih(IP(V))-space. To justify this claim, we note that

because of Ih(IP(V)) = SU(V) , Ih(IP(V)) acts transitively on F(Qn−2, IP(V)) ; the isotropy

group of this action at the point Q is K = Auts(A) . Moreover τ : SU(V) → Ih(IP(V)) =

I(IP(V))0, B 7→ B is a covering map of Lie groups, and therefore the actions of the Lie groups

SU(V) and of Ih(IP(V)) on F(Qn−2, IP(V)) induce “isomorphic” naturally reductive structures

on F(Qn−2, IP(V)) as was explained in Remark 7.3(b) (K ′ = K ).

Let us now consider the anti-holomorphic isometry A : IP(V) → IP(V) and the involutive Lie

group automorphism

σ : Ih(IP(V)) → Ih(IP(V)), f 7→ A ◦ f ◦ A−1 . (7.14)

It is easily seen that Fix(σ) = Auts(A) = K holds, and therefore σ gives rise to a

symmetric space structure on the Ih(IP(V))-space F(Qn−2, IP(V)) . The reductive structure
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mσ = Eig(σL,−1) induced by this symmetric structure is orthogonal to the Lie algebra

k = Eig(σL, 1) of K with respect to the Killing form κ of Ih(IP(V)) = SU(V) (indeed,

σL is a Lie algebra automorphism, and therefore we have for every X ∈ mσ and Y ∈ k :

κ(X,Y ) = κ(σL(X), σL(Y )) = κ(−X,Y ) = −κ(X,Y ) and hence κ(X,Y ) = 0 ), whence

mσ = k⊥,κ follows. Therefore the symmetric structure on F(Qn−2, IP(V)) defined by σ induces

the original reductive structure on this space.

It remains to show the statement on the universal cover of F(Qn−2, IP(V)) . For this, we consider

the homogeneous SU(V)-space SU(V)/K0 and the involutive Lie group automorphism

σ̃ : SU(V) → SU(V), B 7→ A ◦B ◦ A−1 ; (7.15)

we have Fix(σ̃) = Auts(A)0 = K0 , and therefore σ̃ induces a symmetric structure on

SU(V)/K0 .

Because SU(V) is simply connected and K0 is connected, SU(V)/K0 is simply connected, as

can be read off the exact homotopy sequence for the fibre bundle SU(V) → SU(V)/K0 . Moreover

K0 = Auts(A)0 is isomorphic to SO(n) (see Proposition 2.17(a)), and therefore SU(V)/K0 is

isomorphic to SU(n)/SO(n) .

We now consider the covering map ψ : SU(V)/K0 → SU(V)/K (whose number of leaves equals

the number of connected components of K ) and note that the group covering map τ : SU(V) →
Ih(IP(V)) gives rise to a map τ : SU(V)/K → Ih(IP(V))/K so that the following diagram

commutes:

SU(V)
idSU(V)

//

��

SU(V)
τ //

��

Ih(IP(V))

��
SU(V)/K0

ψ
// SU(V)/K τ

// Ih(IP(V))/K ;

here the vertical arrows represent the canonical projections. Both SU(V)/K and Ih(IP(V))/K

are isomorphic to F(Qn−2, IP(V)) , and Remark 7.3(b) shows that τ corresponds to the identity

map on F(Qn−2, IP(V)) under these isomorphisms. In particular, τ is a diffeomorphism.

From the commutativity of the diagram it follows that (τ ◦ ψ, τ) is a homomorphism of homo-

geneous spaces; moreover from (7.14) and (7.15) it is seen that τ ◦ σ̃ = σ ◦τ holds, and therefore

(τ ◦ ψ, τ) is in fact a homomorphism of symmetric spaces from the SU(V)-space SU(V)/K0

onto the Ih(IP(V))-space Ih(IP(V))/K ; moreover τ ◦ ψ is a covering map.

Because the Ih(IP(V))-spaces Ih(IP(V))/K and F(Qn−2, IP(V)) are isomorphic as symmetric

spaces, we therefore see that τ ◦ ψ gives rise to a covering map of symmetric spaces from

SU(V)/K0 onto F(Qn−2, IP(V)) ; remember that SU(V)/K0 is isomorphic to SU(n)/SO(n) . �

7.3 Congruence families in the complex quadric

Continuing to use the notations of Section 7.2, we now suppose that (V,A) is a CQ-space and

consider the complex quadric Q := Q(A) in IP(V) . Q now plays the role of the ambient
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space, in which we will study congruence families induced by projective subspaces or complex

quadrics contained in Q . These families will turn out to be nice submanifolds of F(IPk, IP(V))

and F(Qk, IP(V)) , respectively. We put m := dimC Q = n − 2 and suppose m ≥ 3 (so that

every isometry of Q is either holomorphic or anti-holomorphic, see Theorem 3.23(c)).

We note that Auts(A)0 acts transitively and via holomorphic isometries on Q by the action

ϕ : Auts(A)0 × Q → Q, (B, p) 7→ B(p) (see Proposition 3.9); moreover Q is a Hermitian

symmetric Auts(A)0-space of compact type and τ : Auts(A)0 → I(Q), B 7→ ϕB is a covering

map onto Ih(Q)0 = I(Q)0 , see Theorem 3.23(a). It will turn out that Auts(A)0 acts transitively

on the connected components of the congruence families we consider, and thus we will regard

them as naturally reductive Auts(A)0-spaces in the way described in Section 7.1.

Totally geodesic complex subquadrics in Q . We fix k ∈ {1, . . . ,m − 1} . As we saw

in Chapter 6, the set of k-dimensional complex subquadrics contained in Q does not form

a single congruence family, but rather an infinite multitude of such families parametrized by

the characteristic angle t ∈ [0, π4 ] , see Theorem 6.6 and Corollary 6.17. Here we study the

congruence family given by t = 0 , i.e. the congruence family of those k-dimensional complex

subquadrics of Q which are totally geodesic submanifolds of Q (of type (G1, k) ). We denote

this congruence family by F(Qk
tg, Q) .

7.10 Theorem. (a) Already Auts(A)0 acts transitively on F(Qk
tg, Q) via τ , and therefore we con-

sider F(Qk
tg, Q) as a naturally reductive homogeneous Auts(A)0-space as described in Sec-

tion 7.1. As such, F(Qk
tg, Q) is isomorphic to the real Grassmannian Gk+2(V (A)) (where

A ∈ A ). In particular, the reductive structure of F(Qk
tg, Q) is induced by a symmetric

structure. We have dimIR F(Qk
tg, Q) = (k + 2)(m− k) .

(b) F(Qk
tg, Q) is a compact, connected submanifold of F(Qk, IP(V)) . As a reductive homoge-

neous space, it is a subspace of F(Qk, IP(V)) , and therefore, it is a totally geodesic submani-

fold of F(Qk, IP(V)) ; moreover the Riemannian metric of F(Qk
tg, Q) is the m

2(m+2) -fold of

the Riemannian metric induced by F(Qk, IP(V)) .

Proof. In the following, we fix A ∈ A . For (a). For every V ′ ∈ Gk+2(V (A)) , V ′ ⊕ JV ′ is a

(k + 2)-dimensional CQ-subspace of V and therefore we have Q ∩ [V ′ ⊕ JV ′] ∈ F(Qk
tg, Q) by

Lemma 5.8. We now consider the map

f : Gk+2(V (A)) → F(Qk
tg, Q), V ′ 7→ Q ∩ [V ′ ⊕ JV ′] .

f is surjective because of Proposition 5.10. f is also injective: Suppose that V ′
1 , V

′
2 ∈

Gk+2(V (A)) are given with f(V ′
1) = f(V ′

2) . For ` ∈ {1, 2} we consider the partial conjugation

A` ∈ Conk+2(V) characterized by A`|(V ′
` ⊕ JV ′

` ) = A|(V ′
` ⊕ JV ′

` ) and A`|(V ′
` ⊕ JV ′

` )
⊥ = 0 ;

then we have A`(V) = V ′
` ⊕ JV ′

` and Q(A`) = f(V ′
` ) . By hypothesis we have Q(A1) = Q(A2) ,

hence there exists λ ∈ S1 with A1 = λA2 by Proposition 7.9(b). Therefrom A1(V) = A2(V)

follows. We now obtain

V ′
1 = (V ′

1 ⊕ JV ′
1) ∩ V (A) = A1(V) ∩ V (A) = A2(V) ∩ V (A) = (V ′

2 ⊕ JV ′
2) ∩ V (A) = V ′

2 ,

completing the proof of the injectivity of f .



7.3. Congruence families in the complex quadric 179

The Lie group SO(V (A)) acts transitively on Gk+2(V (A)) , and the Lie group Auts(A)0 acts

transitively on F(Qk
tg, Q) via τ (see Corollary 6.17(b)). Moreover, with the isomorphism of

Lie groups SO(V (A)) → Auts(A)0, L 7→ LC (see Proposition 2.17(a)), (f, F ) is an isomor-

phism of homogeneous spaces from the SO(V (A))-space Gk+2(V (A)) onto the Auts(A)0-space

F(Qk
tg, Q) .

Because on both Gk+2(V (A)) and on F(Qk
tg, Q) , the reductive structure is given by m = k⊥,κ

via the Lie algebra k of the respective isotropy group and the Killing form κ of the acting

group, and because on both spaces the Riemannian metric is induced by the Killing form,

(f, F ) is in fact an isomorphism of naturally reductive homogeneous spaces. In particular, we

have dimF(Qk
tg, Q) = dimGk+2(V (A)) , which gives the formula for the dimension.

For (b). The Lie group G := SU(V) acts (transitively) on F(Qk, IP(V)) , hence the Lie subgroup

G′ := Auts(A)0 of G also acts on F(Qk, IP(V)) , and the set F(Qk
tg, Q) is an orbit of the latter

action. Considering F(Qk
tg, Q) in this way, it is a differentiable submanifold of F(Qk, IP(V)) ;

its differentiable structure is characterized by the fact that for fixed Q′ ∈ F(Qk
tg, Q) , the map

G′ → F(Qk
tg, Q), B 7→ B(Q′) is a surjective submersion. Therefore this differentiable structure

coincides with the original differentiable structure on the family F(Qk
tg, Q) defined in Proposi-

tion 7.1. Because G′ is compact and connected, F(Qk
tg, Q) is a compact, and hence regular,

connected submanifold of F(Qk, IP(V)) , also see [Var74], Theorem 2.9.7, p. 80. The inclusion

map F(Qk
tg, Q) ↪→ F(Qk, IP(V)) is equivariant with respect to the action of G′ , and hence it fol-

lows that the homogeneous G′-space F(Qk
tg, Q) is a homogeneous subspace of the homogeneous

G-space F(Qk, IP(V)) .

The reductive structure of the SO(V (A))-space Gk+2(V (A)) at V ′ ∈ Gk+2(V (A)) is in block

matrix notation with respect to the decomposition V (A) = V ′ 	 (V ′)⊥,V (A) given by

{(
0 −Z∗

Z 0

)∣∣∣∣∣Z : V ′ → (V ′)⊥,V (A) linear

}
.

Under the isomorphism (f, F ) of reductive homogeneous spaces, this space is transformed into

the reductive structure of the G′-space F(Qk
tg, Q) at the “point” Q′ := f(V ′) ∈ F(Qk

tg, Q) ,

which is therefore given by

m′ =

{(
0 −(ZC)∗

ZC 0

)∣∣∣∣∣Z : V (A′) → (kerA′ ∩ V (A)) linear

}
,

where A′ ∈ Conk+2(V) is the partial conjugation characterized by A′|(V ′ ⊕ JV ′) = A|(V ′ ⊕
JV ′) and A′|(V ′ ⊕ JV ′)⊥ = 0 , and where the block matrix is to be read with respect to the

decomposition V = A′(V) 	 kerA′ ; note that V (A′) = V ′ holds. If we denote the reductive

structure of the G-space F(Qk, IP(V)) at Q′ ∈ F(Qk
tg, Q) by m = m1 ⊕ m2 as in the proof of

Theorem 7.5(c)(i), we now see by comparison with Equation (7.11) that m′ ⊂ m1 ⊂ m holds.

Thus F(Qk
tg, Q) is a reductive homogeneous subspace of F(Qk, IP(V)) .

Moreover, if we denote the usual scalar product of endomorphisms by 〈〈·, ·〉〉 , the Killing forms of

g′ and of g are given by (X,Y ) 7→ −m·〈〈X,Y 〉〉 and (X,Y ) 7→ −2(m+2)·〈〈X,Y 〉〉 , respectively
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(see Proposition 2.17(a) and [IT91], p. 60). It follows from this fact that the Riemannian metric

of F(Qk
tg, Q) is the m

2(m+2) -fold of the Riemannian metric induced by F(Qk, IP(V)) . �

Projective subspaces in Q . We now suppose k ≤ m
2 . As we saw in Section 5.5, there

exist k-dimensional complex-projective subspaces of IP(V) which are contained in Q ; they are

exactly the totally geodesic submanifolds of Q of type (I1, k) .

We now characterize the position of these subspaces in the following way: Put Q̃ := Q̃(A) and

denote by

Gk+1(V, Q̃) = {U ∈ Gk+1(V) |S(U) ⊂ Q̃ }
the set of complex-(k + 1)-dimensional, isotropic subspaces of V . Note that G1(V, Q̃) = Q

holds. Denoting for any Λ ∈ F(IPk, IP(V)) by Λ̂ ∈ Gk+1(V) the linear space characterized by

[Λ̂] = Λ , we therefore have

∀Λ ∈ F(IPk, IP(V)) :
(
Λ ⊂ Q ⇐⇒ Λ̂ ∈ Gk+1(V, Q̃)

)
. (7.16)

For each U ∈ Gk+1(V, Q̃) and any A ∈ A there exists a partial complex structure j : V (A) →
V (A) (i.e. a skew-adjoint endomorphism with j3 = −j ) of rank 2(k + 1) so that

U = {x+ Jjx |x ∈ j(V (A)) } (7.17)

holds; note that j|j(V (A)) is an orthogonal complex structure on j(V (A)) . Conversely, for ev-

ery partial complex structure j on V (A) , the corresponding space U defined by Equation (7.17)

is a member of Gk+1(V, Q̃) .

Proof of the last statements. Let U ∈ Gk+1(V, eQ) be given. By Proposition 2.20(e),(f) there exist a 2(k + 1)-

dimensional subspace Y ⊂ V (A) and an orthogonal complex structure τ : Y → Y so that U = {x+Jτx | x ∈ Y }

holds. Let j : V (A) → V (A) be the linear map characterized by j|Y = τ and j|Y ⊥ = 0 . Then j is a partial

complex structure of rank 2(k + 1) so that Equation (7.17) holds.

Conversely, if a partial complex structure j : V (A) → V (A) is given, we have 〈x + Jjx, A(x + Jjx)〉C =

〈x + Jjx, x− Jjx〉C = 〈x, x〉C − 〈jx, jx〉C = 0 for every x ∈ j(V (A)) and therefore the space U corresponding

to j is indeed isotropic. �

7.11 Theorem. (a) I(Q) acts transitively on the set of k-dimensional projective subspaces con-

tained in Q , and therefore this set forms a congruence family, which we denote by

F(IPk, Q) .19 In fact, already Auts(A) acts transitively on F(IPk, Q) via the two-fold

covering map Auts(A) → Ih(Q), B 7→ B|Q .

(b) F(IPk, Q) is a complex, compact submanifold of F(IPk, IP(V)) . It is of complex dimension
1
2 · (k+ 1)(2m− 3k) and thus of complex codimension 1

2 · (k+ 1)(k+ 2) in F(IPk, IP(V)) .

(c) If 2k < m , the manifold F(IPk, Q) is connected; if 2k = m , it consists of exactly two

connected components. In either case, Auts(A)0 acts transitively on the connected com-

ponents of F(IPk, Q) , and they will therefore be considered as naturally reductive homoge-

neous Auts(A)0-spaces in the way described in Section 7.1. Furthermore:

19 F(IPk, Q) is isomorphic to the typical fibre of a twistor bundle, see [Raw84] Proposition 2.1 (p. 88) and p. 102.
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(i) If 2k = m , the reductive structures of the connected components of F(IPk, Q) are

induced by symmetric structures, and in this regard they are isomorphic to the irre-

ducible Hermitian symmetric space of compact type SO( 2(k + 1) )/U(k + 1) of type

DIII, see [Hel78], p. 518. Moreover, they are symmetric subspaces and therefore to-

tally geodesic submanifolds of the symmetric space F(IPk, IP(V)) ; their Riemannian

metric is the m
2(m+2) -fold of the Riemannian metric induced by F(IPk, IP(V)) .

(ii) If 1 ≤ 2k < m , the reductive structure of F(IPk, Q) is not induced by a symmet-

ric structure. Therefore, F(IPk, Q) (equipped with the reductive structure mentioned

above) is also not a reductive homogeneous subspace of F(IPk, IP(V)) (although it is

a homogeneous subspace). Moreover, F(IPk, Q) is not a totally geodesic submanifold

of F(IPk, IP(V)) .

Proof. Throughout the proof we fix A ∈ A . For (a). It is easily seen from the representation of

the members of Gk+1(V, Q̃) via partial complex structures as in Equation (7.17) that the action

of Aut(A)∪̇Aut(A) leaves Gk+1(V, Q̃) invariant, and that already Auts(A) acts transitively on

this space. Because the Aut(A)∪̇Aut(A)-equivariant map θ : Gk+1(V) → F(IPk, IP(V)), U 7→
[U ] maps Gk+1(V, Q̃) bijectively onto the set Pk of k-dimensional projective subspaces of IP(V)

which are contained in Q (see (7.16)), it follows that Aut(A)∪̇Aut(A) = Ih(Q)∪̇Iah(Q) = I(Q)

leaves Pk invariant, and that already Auts(A) = Ih(Q) acts transitively on Pk . Therefore Pk

is indeed a congruence family, which is in the sequel denoted by F(IPk, Q) .

For (b). The Lie group SU(V) acts (transitively) on F(IPk, IP(V)) , hence the Lie subgroup

Auts(A) of SU(V) also acts on F(IPk, IP(V)) , and the set F(IPk, Q) is an orbit of the latter

action. Considering F(IPk, Q) in this way, it is a differentiable submanifold of F(IPk, IP(V)) ;

its differentiable structure is characterized by the fact that for fixed Λ ∈ F(IPk, Q) , the map

Auts(A) → F(IPk, Q), f 7→ f(Λ) is a surjective submersion. Therefore this differentiable struc-

ture coincides with the original differentiable structure on the family F(IPk, Q) defined in Propo-

sition 7.1. Because Auts(A) is compact, F(IPk, Q) is a compact, and hence regular submanifold

of F(IPk, IP(V)) , also see [Var74], Theorem 2.9.7, p. 80.

However, a more explicit proof is needed to show that F(IPk, Q) is a complex submanifold of

F(IPk, IP(V)) .

Because of (7.16), the biholomorphic map θ−1 : F(IPk, IP(V)) → Gk+1(V), Λ 7→ Λ̂ (see Theo-

rem 7.4) maps F(IPk, Q) onto Gk+1(V, Q̃) . Therefore it is sufficient to show that Gk+1(V, Q̃)

is a complex submanifold of Gk+1(V) . We abbreviate r := k + 1 .

We now consider the Stiefel manifold Ŝtr(V) := {u ∈ L(Cr,V) | u is injective } ; this is a com-

plex manifold, and the canonical projection %̂ : Ŝtr(V) → Gr(V), u 7→ u(Cr) is a holomorphic

submersion. Moreover, we fix A ∈ A and consider the non-degenerate, symmetric C-bilinear

form β : V × V → C, (v, w) 7→ 〈v,Aw〉C and the holomorphic map

g : Ŝtr(V) → Cr(r+1)/2, u 7→
(
β(uµ, uν)

)
1≤µ≤ν≤r ;

here we put uµ := u(eµ) for u ∈ L(Cr,V) ⊃ Ŝtr(V) and µ ∈ {1, . . . , r} , where (e1, . . . , er) is



182 Chapter 7. Families of congruent submanifolds

the canonical basis of Cr . Note that because of Proposition 2.20(a), g−1({0}) = %̂−1(Gr(V, Q̃))

holds.

Immediately, we will show that g is a submersion; it then follows that g−1({0}) = %̂−1(Gr(V, Q̃))

is a regular, complex submanifold of Ŝtr(V) (see [Nar68], Corollary 2.5.5, p. 81). Thus we may

then conclude that Gr(V, Q̃) is a complex submanifold of Gr(V) . (Local trivializations of %̂ give

rise to local parameterizations of Gr(V, Q̃) .) Moreover, we see that the complex codimension

of %̂−1(Gr(V, Q̃)) in Str(V) is equal to 1
2r(r+ 1) = 1

2(k+ 1)(k+2) , and therefore the complex

codimension of Gr(V, Q̃) in Gr(V) also is 1
2(k + 1)(k + 2) . Therefrom follow the formulas for

the codimension and (together with Theorem 7.4) the dimension of F(IPk, Q) .

For the proof of the submersivity of g let u ∈ Ŝtr(V) be given. Then we have
−−−−−−→
TuŜtr(V) =

L(Cr,V) and

∀ξ ∈ TuŜtr(V) :
−−−−→
Tug(ξ) =

(
β((

−→
ξ )µ, uν) + β(uµ, (

−→
ξ )ν)

)
1≤µ≤ν≤r ∈ Cr(r+1)/2 .

To show that Tug : TuŜtr(V) → TuC
r(r+1)/2 is surjective, it is therefore sufficient to prove that

the linear forms (λµν)µ≤ν with

λµν : L(Cr,V) → C, a 7→ β(aµ, uν) + β(uµ, aν)

are linear independent. For this we first note that because of the non-degeneracy of β we have

∀z ∈ Cr ∃w ∈ V :
(
β(w, uν)

)
1≤ν≤r = z . (7.18)

Now let (αµν)µ≤ν ∈ Cr(r+1)/2 be given so that
∑

µ≤ν αµν λµν = 0 holds. Further, let µ0 ≤ ν0

be given and put ` := 1 in the case µ0 < ν0 , ` := 2 in the case µ0 = ν0 . By (7.18) there exists

a ∈ L(Cr,V) so that

∀µ, ν ∈ {1, . . . , r} : β(aµ, uν) = 1
` · δµ,µ0 · δν,ν0

holds. Then we have for every µ ≤ ν : λµν(a) = δµ,µ0 · δν,ν0 and therefore

0 =
∑

µ≤ν
αµν λµν(a) = αµ0 ν0 .

This shows the linear independence of (λµν) .

For (c). We fix an arbitrary subspace Λ0 ∈ F(IPk, Q) . Then we have W0 := Λ̂0 ∈ Gr(V, Q̃) by

(7.16); therefore, there exists a partial complex structure j0 on V (A) of rank 2(k + 1) such

that W0 = {x+ Jj0x |x ∈ j0(V (A)) } holds.

Because the group Auts(A) ∼= O(V (A)) , which acts transitively on F(IPk, Q) , has exactly two

connected components (Proposition 2.17(a)), F(IPk, Q) has at most two connected components,

and G := Auts(A)0 acts transitively on each of them, so they are homogeneous G-spaces,

and become naturally reductive homogeneous G-spaces by the construction described in Sec-

tion 7.1. Moreover, G is a subgroup of SU(V) , so the connected components of F(IPk, Q) are

homogeneous subspaces of the homogeneous SU(V)-space F(IPk, IP(V)) .
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To investigate whether F(IPk, Q) is connected, we consider the isotropy group K of the action

of Auts(A) on F(IPk, Q) at Λ0 ; K is also given by {B ∈ Auts(A) |BjC0 = jC0 B } . As we

will now see, the connectedness of F(IPk, Q) depends on whether K is contained in the neutral

component G of Auts(A) .

In the case 2k < m there exists a 1-codimensional subspace of V (A) which contains j0(V (A)) ,

and if L ∈ O(V (A)) is the reflection in such a subspace, we have LC ∈ K and detL = −1 .

Because of Auts(A) = G ∪̇ {B ◦ LC |B ∈ G } , we see that in this case already the connected

group G acts transitively on F(IPk, Q) , and therefore F(IPk, Q) is connected.

On the other hand, in the case 2k = m the unitary group U(V (A), j0) is (via complexification

with respect to the complex structure of V ) isomorphic to K , hence K is connected and

therefore contained in G . It follows that {B(Λ0) |B ∈ G } and {B(Λ0) |B ∈ Auts(A) \ G }
are disjoint, open subsets of F(IPk, Q) which together constitute all of F(IPk, Q) . Therefore

these two sets are the two connected components of F(IPk, Q) in this case.

For (c)(i). We suppose 2k = m and denote the connected component of F(IPk, Q) which

contains Λ0 by F(IPk, Q)′ . As we saw above, G acts transitively on F(IPk, Q)′ , and therefore

F(IPk, Q)′ is a (ϕ|(G × Q))-family of submanifolds in the sense of Section 7.1, and we regard

this family as a naturally reductive space in the way described there.

We next describe how the reductive structure of F(IPk, Q)′ is induced by a symmetric structure.

For this we consider the reflection S : V → V in W0 and the involutive Lie group automorphism

σ̃ : SU(V) → SU(V), B 7→ SBS−1 .

We have jC0 = −J ◦ S (this equation is easily checked on W0 and on W⊥
0 = {x − Jj0x |x ∈

V (A) } ) and consequently

∀B ∈ G : σ̃(B) = jC0 B (jC0 )−1 ∈ G . (7.19)

Thus we see that σ := σ̃|G is an involutive Lie group automorphism on G . It also follows

from (7.19) that Fix(σ) = K holds (remember that we have K ⊂ G in the present situation),

and therefore σ gives rise to a symmetric structure on F(IPk, Q)′ . The reductive structure

mσ = Eig(σL,−1) induced by this symmetric structure is orthogonal to k = Eig(σL, 1) with

respect to the Killing form κ of g (by the same argument that was already used in the proof

of Theorem 7.5(c)(ii)), whence it follows that the symmetric structure on F(IPk, Q)′ defined by

σ induces the original reductive structure on this space. Note that F(IPk, Q)′ is isomorphic to

G/K ∼= SO( 2(k + 1) )/U(k + 1) .

Now we show that equipped with this symmetric structure, F(IPk, Q)′ is a symmetric subspace

of F(IPk, IP(V)) . For this purpose we note that the isotropy group of the action of SU(V) on

F(IPk, IP(V)) is K̃ := {B ∈ SU(V) |B(W0) = W0 } , that Fix(σ̃) = K̃ holds, that therefore σ̃

gives rise to a symmetric structure on F(IPk, IP(V)) , and that this symmetric structure is the

one described in Theorem 7.4 which induces the original reductive structure on F(IPk, IP(V)) .

Because σ is the restriction of σ̃ to G , it follows that F(IPk, Q)′ is a symmetric subspace, and

therefore a totally geodesic submanifold, of F(IPk, IP(V)) .
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By the same argument as in the proof of Theorem 7.10(b) we see that the Riemannian metric

of F(IPk, Q)′ is the m
2(m+2) -fold of the Riemannian metric induced by F(Qk, IP(V)) .

For (c)(ii). We now suppose 2k < m and once again abbreviate r := k + 1 , then we have 4 ≤
2r < m+ 2 . In this setting G acts transitively on F(IPk, Q) , which therefore is a (ϕ|(G×Q))-

family of submanifolds in the sense of Section 7.1; we regard this family as a naturally reductive

space in the way described there.

We derive an explicit description of the reductive structure m := mΛ0 of F(IPk, Q) at Λ0 ∈
F(IPk, Q) : Now, the isotropy group of G at Λ0 is K ∩ G = {B ∈ G |BjC0 = jC0 B } ; hence

its Lie algebra is k := {X ∈ g |XjC
0 = jC0 X } = ker ad(jC0 ) , note jC0 ∈ g = auts(A) (see

Proposition 2.17(a)). Because ad(jC
0 ) is skew-adjoint with respect to the Killing form of g , it

follows that the reductive structure of F(IPk, Q) is given by m = ad(jC0 )(g) .

There exists an orthonormal basis (a1, . . . , am+2) of V (A) so that

∀ν ∈ {1, . . . ,m+ 2} : j0aν =





aν+r for 1 ≤ ν ≤ r

−aν−r for r + 1 ≤ ν ≤ 2r

0 for 2r + 1 ≤ ν ≤ m+ 2

holds. We consider the endomorphisms X := a1 ∧ ar ∈ g and Y := a2r ∧ a2r+1 ∈ g , i.e.

Xa1 = −ar, Xar = a1, Xaν = 0 otherwise

and Y a2r = −a2r+1, Y a2r+1 = a2r, Y aν = 0 otherwise.

Then we have X ′ := ad(jC0 )X, Y ′ := ad(jC0 )Y ∈ m . We further put Z := [X ′, Y ′] . Then

a simple calculation shows (ad(j0)Z)a1 = −a2r+1 , and therefore Z 6∈ ker ad(j0) = k . Thus

we have [m,m] 6⊂ k , and therefore the reductive structure of F(IPk, Q) cannot come from a

symmetric structure. Furthermore, because F(IPk, IP(V)) is a symmetric space, the submanifold

F(IPk, Q) cannot be a reductive homogeneous subspace (because it would then be a totally

geodesic submanifold and hence a symmetric subspace).

Finally, assume that F(IPk, Q) were a totally geodesic submanifold of F(IPk, IP(V)) . Be-

cause F(IPk, Q) is connected and complete (as a Riemannian naturally reductive homogeneous

space), F(IPk, Q) would then be a Riemannian symmetric G′
0-subspace of the SU(V)-space

F(IPk, IP(V)) , where

G′ := {B ∈ SU(V) |B(F(IPk, Q)) = F(IPk, Q) }

([KN69], Theorem XI.4.2, p. 235). We will show that G′
0 = G holds. Then F(IPk, Q) would

be a Riemannian symmetric G-space; its symmetric structure would induce the original natu-

rally reductive structure of F(IPk, Q) because of the same argument as in the proof of Theo-

rem 7.5(c)(ii), but this is impossible by our previous result.

To prove G′
0 = G , we first show

G′ = {µB0 ∈ SU(V) |B0 ∈ Auts(A), µ ∈ S1, µm+2 = det(B0) } . (7.20)
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If B is taken from the right-hand side of Equation (7.20), then we have B ∈ Aut(A) and

therefore B(Q) = Q . It follows that we have B(F(IPk, Q)) = F(IPk, Q) and thus B ∈ G′ .
Conversely, let B ∈ G′ be given. We have

B(Q) = Q . (7.21)

In fact, let p ∈ Q be given. Then there exists Λ ∈ F(IPk, Q) with p ∈ Λ . Because of B ∈ G′

we then also have B(Λ) ∈ F(IPk, Q) , in particular B(p) ∈ Q . Thus we have shown B(Q) ⊂ Q .

Analogously we obtain B−1(Q) ⊂ Q and therefore Q ⊂ B(Q) . Therefrom Equation (7.21)

follows.

Now let us fix A ∈ A . From Equation (7.21) we see Q(BAB−1) = Q(A) ; by Proposition 1.10

it follows that there exists λ ∈ S1 so that BAB−1 = λA holds. If we choose µ ∈ S1 with

µ2 = λ , we therefore have (µB)A(µB)−1 = A and hence B0 := µB ∈ Auts(A) . We have

1 = det(B) = det(µB0) = µm+2 det(B0)︸ ︷︷ ︸
∈{±1}

and therefore det(B0) = µm+2 . This shows that B = µB0 is a member of the right-hand side

of Equation (7.20).

We now show G′
0 = G . Because G = Auts(A)0 is a connected group which is contained in

G′ by Equation (7.20), we have G ⊂ G′
0 . For the converse direction, we fix A ∈ A and

v0 ∈ S(V (A)) . For every B ∈ G′ , say B = µB0 with

B0 ∈ Auts(A) and µ ∈ S1, µm+2 = det(B0) ∈ {±1} ,

we have

〈Bv0, ABv0〉C = µ2 · 〈B0v0, A(B0v0︸ ︷︷ ︸
∈V (A)

)〉C = µ2 · ‖B0v0‖2 = µ2 .

Because we have µm+2 = 1 , we thus see that the continuous map

f : G′ → S1, B 7→ 〈Bv0, ABv0〉C

attains only discrete values and is therefore on G′
0 identically equal to f(idV) = 1 . Conse-

quently, we have

G′
0 ⊂ f−1({1}) = {µB0 |B0 ∈ Auts(A), µ2 = 1, µm+2 = det(B0) }

⊂ {µB0 |B0 ∈ Auts(A), µ ∈ {±1} } = Auts(A)

and therefore G′
0 ⊂ Auts(A)0 = G . �
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Chapter 8

The geometry of Q1 , Q3 , Q4 and Q6

As was first noted by È. Cartan in [Car14], there are some “intersection points” between the

seven infinite series of classical irreducible Riemannian symmetric spaces. To determine which

they are, one can use the well-known fact that two simply connected Riemannian symmetric

spaces of compact type are isomorphic if and only if their Lie triple systems have the same

“extended Dynkin diagram”, i.e. if they have isomorphic configurations of simple roots and if

the multiplicities of corresponding simple roots are equal ([Loo69], Theorem VII.3.9(a), p. 145).

As an inspection of the table of Dynkin diagrams of irreducible Lie triple systems (see [Loo69],

Table 4 on p. 119 and Table 8 on p. 146) shows, the following isomorphies and no other exist

between complex quadrics of specific dimension and members of other Riemannian symmetric

spaces:

Q1 ∼= S2 ∼= IP1, Q2 ∼= IP1 × IP1, Q3 ∼= Sp(2)/U(2),

Q4 ∼= G2(C
4) and Q6 ∼= SO(8)/U(4).

The subject of the present chapter is the explicit construction of these isomorphisms (except for

Q2 ∼= IP1 × IP1 , which has already been described in Section 3.4).

It should be noted that the concept of an isomorphism between the mentioned spaces can be

understood with respect to several categories: First, the isomorphisms can be understood as

isomorphisms of complex manifolds, as one would do in complex analysis.

But the viewpoint most natural in the present situation is that of the theory of symmetric spaces,

the spaces involved being irreducible symmetric spaces. Then, an isomorphism is an isomorphism

of symmetric spaces as defined in Sections A.2, A.3. (Are we speaking of isomorphisms of affine

symmetric spaces, of Riemannian symmetric spaces or of Hermitian symmetric spaces? This

distinction does not play an important role here: Qm is irreducible for m 6= 2 , and therefore

an isomorphism of affine symmetric spaces from Qm (m ∈ {1, 3, 4, 6} ) to another Riemannian

(Hermitian) symmetric space already is an isomorphism of Riemannian (Hermitian) symmetric

spaces.)

One might also take the viewpoint of Riemannian geometry and ask for isometries. However,

then one first has to answer the question which Riemannian metric one should use on the spaces

187
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Sp(2)/U(2) , G2(C
4) and SO(8)/U(4) occurring in the isomorphies for Q3 , Q4 resp. Q6 .

They are symmetric spaces, so one will naturally use such a metric that the acting group acts

via isometries. Because the spaces are irreducible, two such metrics differ only by a positive, real

factor. However, no member of this IR+-family of metrics is singled out in a geometric way.20

Thus we see that the geometrically relevant concept here is not that of an isometry, but that of

a homothety.

Finally, the complex Grassmannian G2(C
4) can be equipped with the structure of a quater-

nionic Kähler manifold, see Section 8.3, therefore the isomorphy to Q4 shows that Q4 can

also be equipped with such a structure, such that the isomorphy holds also as an isomorphy of

quaternionic-Kähler manifolds. In that situation we will find a relation between the quaternionic

Kähler structure and the CQ-structure on Q4 .

In the construction of the specific isomorphisms, we will employ the following strategies:

(a) Q1 ∼= IP1 . ( SO(3)/SO(2) ∼= SU(2)/S(U(1) × U(1)) .) In Section 8.1 we will describe an

isomorphism between Q1 and S2
r=1/

√
2

(note that both these spaces are represented by

the quotient SO(3)/SO(2) ); it is well-known that the oriented euclidean sphere S2
r=1/

√
2

is isomorphic to IP1 .

(b) Q2 ∼= IP1 × IP1 . ( SO(4)/(SO(2)×SO(2)) ∼= (SU(2)×SU(2))/(S(U(1)×U(1)) × S(U(1)×
U(1))) .) This isomorphism has already been constructed in Section 3.4; it is based on the

Segre embedding IP1 × IP1 → Q2 ⊂ IP3 .

(c) Q4 ∼= G2(C
4) . ( SO(6)/(SO(2) × SO(4)) ∼= SU(4)/S(U(2) × U(2)) .) This isomorphism

will be constructed in Section 8.2 via the Plücker embedding. In Section 8.3, we will

see in what way G2(C
n) carries the structure of a quaternionic Kähler manifold; the

isomorphy Q4 ∼= G2(C
4) therefore shows that Q4 (unlike the complex quadrics of every

other dimension) also carries the structure of a quaternionic Kähler manifold. Moreover,

we will find a relation between this quaternionic Kähler structure and the CQ-structure

on Q4 .

(d) Q3 ∼= Sp(2)/U(2) . We will construct this isomorphism by realizing Sp(2)/U(2) as a

Sp(2)-orbit in G2(C
4) and then restricting the isomorphism described in (c) to this orbit.

(e) Q6 ∼= SO(8)/U(4) . We will use the theory of spinors and the Principle of Triality (which

are described in Appendix B) to construct an isomorphism between Q6 and a connected

component of the congruence family F(IP3, Q6) . The latter is isomorphic to SO(8)/U(4)

by Theorem 7.11(c)(i).

During the construction of the isomorphisms, we will also obtain the following isomorphisms of

Lie groups:

20Actually, this is not quite true for G2(C
4) . Here the construction of the quaternionic Kähler structure

provides a “canonical” Riemannian metric, see Section 8.3.
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(a) Spin(5) ∼= Sp(2) (in connection with Q3 ∼= Sp(2)/U(2) )

(b) Spin(6) ∼= SU(4) (in connection with Q4 ∼= G2(C
4) ).

8.1 Q1 is isomorphic to S2

r=1/
√

2

Let (V,A) be a 3-dimensional CQ-space. Then Q := Q(A) is a 1-dimensional complex quadric,

and we also consider its pre-image under the Hopf fibration Q̃ := Q̃(A) . Moreover, we fix

A ∈ A . Then the 2-sphere S := Sr(V (A)) of radius r := 1/
√

2 is a Riemannian symmetric

SO(V (A))-space in the usual way.

We fix an orientation on V (A) . Then there exists one and only one skew-symmetric bilinear

map × : V (A) × V (A) → V (A), (x, y) 7→ x× y so that for every orthonormal system (x, y) in

V (A) , (x, y, x × y) is a positively oriented orthonormal basis of V (A) . × is called the cross

product on V (A) .

We equip S with the complex structure J S : TS → TS given by

∀q ∈ S, v ∈ TqS :
−−−→
JS
q (v) = (

√
2 q) ×−→v . (8.1)

In this way, S becomes a Hermitian symmetric space.

We also consider the Hopf fibration π : S(V) → IP(V) .

8.1 Proposition. There is one and only one map f1 : Q→ S so that

∀z ∈ Q̃ : f1(π(z)) =
√

2 ReA(z) × ImA(z)

holds and f1 is a holomorphic isometry. Moreover, with the isomorphism of Lie groups

F1 : Auts(A)0 → SO(V (A)), B 7→ B|V (A)

(f1, F1) is an isomorphism of Hermitian symmetric spaces from the Auts(A)0-space Q to the

SO(V (A))-space S . Thus, we have shown the following isomorphy in the category of Hermitian

symmetric spaces:

Q1 ∼= S2
r .

Proof. For z ∈ Q̃ , (
√

2 ReA(z),
√

2 ImA(z)) is an orthonormal system in V (A) by Proposi-

tion 2.23(b), and hence

(
√

2 ReA(z),
√

2 ImA(z), 2 (ReA(z) × ImA(z)) )

is a positively oriented orthonormal basis of V (A) . It follows that ‖ReA(z) × ImA(z)‖ = 1
2

holds, and therefore the map

f̃1 : Q̃→ S, z 7→
√

2 · (ReA(z) × ImA(z)) (8.2)
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in fact maps into S . We also see that

(ReA(z) × ImA(z)) × ImA(z) = −1
2 · ReA(z)

and ReA(z) × (ReA(z) × ImA(z)) = − 1
2 · ImA(z) (8.3)

holds.

For z, z′ ∈ Q̃ we have

f̃1(z) = f̃1(z
′) ⇐⇒ ReA(z) × ImA(z) = ReA(z′) × ImA(z′)

⇐⇒ (ReA(z), ImA(z)) and (ReA(z′), ImA(z′)) are orthonormal bases
of the same 2-dimensional subspace of V (A) with the same orientation.

⇐⇒ ∃ t ∈ IR :
{

ReA(z)=cos(t) ReA(z′)−sin(t) ImA(z′)
ImA(z)=sin(t) ReA(z′)+cos(t) ImA(z′)

⇐⇒ ∃ t ∈ IR : z = eit · z′

⇐⇒ π(z) = π(z′) .

This equivalence shows the existence and injectivity of f1 . f1 is also surjective: If q ∈ S is

given, choose x, y ∈ V (A) with ‖x‖ = ‖y‖ = 1√
2

so that (
√

2 x,
√

2 y,
√

2 q) is a positively

oriented orthonormal basis of V (A) . Then we have p := π(x+ Jy) ∈ Q and f1(p) = q .

f̃1 is differentiable; because π is a surjective submersion, it follows that f1 is also differentiable.

We next show that f1 is a holomorphic isometry. It suffices to show that for any given z ∈ Q̃

Tzf̃1|HzQ : HzQ→ T ef1(z)S

is a C-linear isometry.

We have by Theorem 2.26: −−→HzQ = C · (ReA(z) × ImA(z)) .

Thus any given v ∈ HzQ can be represented as −→v = c · (ReA(z) × ImA(z)) with a suitable

c = a+ ib ∈ C . Then we have

−−−−−→
Tz f̃1(v) =

√
2 ·(ReA(−→v )×ImA(z) + ReA(z)×ImA(−→v ) )

(8.3)
= − 1√

2
·( aReA(z)+b ImA(z) ) (8.4)

and therefore

‖Tz f̃1(v)‖2 = 1
2 · (a2 ‖ReA(z)‖2 + b2 ‖ ImA(z)‖2) = 1

4 · (a2 + b2)

= (a2 + b2) · ‖ReA(z) × ImA(z)‖2 = ‖v‖2 .

Hence Tz f̃1|HzQ is an IR-linear isometry. Moreover, we have
−→
Jv = (−b+ia)·(ReA(z)×ImA(z))

and therefore
−−−−−−−→
JSTzf̃1(v)

(8.1)
= (

√
2 f̃1(z)) ×

−−−−−→
Tzf̃1(v)

(8.2)

(8.4)
= (2 ReA(z) × ImA(z)) × (− 1√

2
(aReA(z) + b ImA(z)))

(8.3)
= − 1√

2
(−bReA(z) + a ImA(z))

(8.4)
=

−−−−−−→
Tz f̃1(Jv) .
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Thus Tz f̃1|HzQ is a C-linear isometry.

F1 is an isomorphism of Lie groups by Proposition 2.17(a). For any B ∈ Auts(A)0 and z ∈ Q̃

we have B|V (A) ∈ SO(V (A)) , and therefore

F1(B)f̃1(z) = B(
√

2 (ReA z × ImA z)) =
√

2 (B(ReA z) ×B(ImA z))

=
√

2 (ReA(Bz) × ImA(Bz)) = f̃1(Bz)

holds. Hence (f1, F1) is an isomorphism of homogeneous spaces. Because the Lie groups

Auts(A)0 and SO(V (A)) acting on the symmetric space Q resp. S are of compact type,

(f1, F1) is in fact an isomorphism of affine symmetric spaces by Proposition A.5. Because f1

is a holomorphic isometry, it follows that (f1, F1) is an isomorphism of Hermitian symmetric

spaces. �

8.2 Q4 is isomorphic to G2(C
4)

In the present section, we first describe a specific embedding P : G2(C
n) → IP(

∧2Cn) from the

complex Grassmannian G2(C
n) , called the Plücker embedding. Then we show how G2(C

n) can

be equipped with the structure of a Hermitian symmetric space. In the case n = 4 , it will turn

out that the image Q of the Plücker embedding is a 4-dimensional symmetric complex quadric

in IP(
∧2C4) , and that P gives rise to an isomorphism of Hermitian symmetric spaces from

G2(C
4) to Q .

At first, we let W be a complex linear space of arbitrary dimension n . To W we associate the

linear space
∧2W of bivectors of W (see Section B.1), the complex projective space IP(

∧2W )

and the holomorphic fibre bundle π̂ :
∧2W \ {0} → IP(

∧2W ), ξ 7→ C ξ . We also consider the

Stiefel manifold

Ŝt2(W ) := {u ∈ L(C2,W ) | u is injective }
of 2-frames in W , which is an open subset and hence a complex submanifold of the C-linear space

L(C2,W ) , the Grassmannian G2(W ) and the projection θ̂ : Ŝt2(W ) → G2(W ), u 7→ u(C2) .

As is well-known, there is exactly one way to equip G2(W ) with the structure of a complex

submanifold so that θ̂ becomes a holomorphic submersion.21

The following fact is well-known:

8.2 Proposition. ξ ∈ ∧2W is decomposable (i.e. ξ = v ∧ w ) if and only if ξ ∧ ξ = 0 holds.

Proof. See [Car51], p. 11. �

In the sequel, we put uµ := u(eµ) for u ∈ L(C2,W ) and µ ∈ {1, 2} ; here (e1, e2) is the

canonical basis of C2 .
21The construction of the manifold structure of the real Grassmannian Gk(IRn) , to which the construction

of the complex manifold structure of the complex Grassmannian Gk(Cn) is entirely analogous, is for example

described in [Boo86], p. 63f.
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8.3 Proposition. There exists a holomorphic embedding P : G2(W ) → IP(
∧2W ) characterized by

∀u ∈ Ŝt2(W ) : P(u(C2)) = π̂(u1 ∧ u2) . (8.5)

Its image in IP(
∧2W ) is the complex submanifold

{ π̂(ξ) | ξ ∈ ∧2W \ {0}, ξ ∧ ξ = 0 } .

P is called the Plücker embedding.

Proof. Let us consider the holomorphic map P̂ : Ŝt2(W ) → ∧2W, u 7→ u1 ∧ u2 . One sees that

∀u, u′ ∈ Ŝt2(W ) :
(
π̂(P̂(u)) = π̂(P̂(u′)) ⇐⇒ θ̂(u) = θ̂(u′)

)

holds. Therefore, there exists exactly one map P : G2(W ) → IP(
∧2W ) so that Equation (8.5)

holds, and it is injective. Moreover, P is holomorphic along with P̂ because θ̂ is a holomorphic

surjective submersion. The image of P is as stated in the proposition because of Proposition 8.2.

GL(W ) acts transitively on G2(W ) via (B,U) 7→ B(U) and it acts transitively on P(G2(W ))

via22 (B, ξ) 7→ B(2)(ξ) . P is equivariant with respect to these actions and therefore Propo-

sition A.1(b) shows P : G2(W ) → P(G2(W )) to be a diffeomorphism. Because G2(W ) is

compact, it follows that P : G2(W ) → IP(
∧2W ) is an embedding. �

We now suppose that W is a unitary space. Then the inner product on W gives rise to the

inner product 〈·, ·〉C on
∧2W characterized by

∀v1, v2, w1, w2 ∈W : 〈v1 ∧ v2, w1 ∧ w2〉C = 〈v1, w1〉C · 〈v2, w2〉C − 〈v1, w2〉C · 〈v2, w1〉C (8.6)

(also see Appendix B.2), and the latter inner product in turn induces the Fubini/Study metric

on the projective space IP(
∧2W ) . In this way IP(

∧2W ) becomes a Kähler manifold and the

Hopf fibration π : S(
∧2W ) → IP(

∧2W ) becomes a Riemannian submersion.

We will equip the complex manifold G2(W ) with a Riemannian metric so that it becomes a

Kähler manifold and the Plücker embedding P : G2(W ) → IP(
∧2W ) becomes an isometric

embedding. It should be noted that the construction of this Riemannian metric is entirely

analogous to the construction of the Fubini/Study metric on a complex projective space via the

Hopf fibration.

The restriction R̂ := R̃|(Ŝt2(W ) × GL(C2)) : Ŝt2(W ) × GL(C2) → Ŝt2(W ) of the map

R̃ : L(C2,W ) × End(C2) → L(C2,W ), (u,A) 7→ u ◦ A (8.7)

is a Lie group action of GL(C2) on Ŝt2(W ) from the right. The orbits of this action are the

fibres of θ̂ , and on them, the action is simply transitive. Therefore θ̂ becomes a principal fibre

bundle with structure group GL(C2) via R̂ .

We will now first construct a Hermitian metric on Ŝt2(W ) , then reduce the principal fibre

bundle θ̂ with structure group GL(C2) to a principal bundle θ : St2(W ) → G2(W ) with

22For the meaning of B(2) see Section B.1.
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structure group U(2) (where St2(W ) is a Riemannian submanifold of Ŝt2(W ) ) and use θ to

project the Riemannian metric of St2(W ) onto G2(W ) , thereby obtaining the desired metric

on G2(W ) .

The complex inner product 〈·, ·〉C on W gives rise to the complex inner product 〈·, ·〉LC on

L(C2,W ) given by

∀u, u′ ∈ L(C2,W ) : 〈u, u′〉LC := 〈u1, u
′
1〉C + 〈u2, u

′
2〉C . (8.8)

As an open subset of L(C2,W ) , the Stiefel manifold Ŝt2(W ) becomes a Hermitian manifold with

the Hermitian metric induced by this inner product. Besides the vertical bundle V bθ := ker(T θ̂)

of θ̂ , we thus also have the horizontal bundle Hbθ := (Vbθ)⊥,T bSt2(W ) . The following proposition

gives an explicit description of these subbundles of T Ŝt2(W ) :

8.4 Proposition. Let u ∈ Ŝt2(W ) be given. Then we have:

(a)
−→
Vbθ
u = {u ◦X |X ∈ End(C2) } = { v ∈ L(C2,W ) | v(C2) ⊂ θ̂(u) } .

(b)
−→
Hbθ
u = { v ∈ L(C2,W ) | v(C2) ⊥ θ̂(u) } .

It follows from this proposition that the linear subspaces
−→
Vbθ
u and

−→
Hbθ
u of L(C2,W ) do not

depend on the choice of u within any given fibre of θ̂ . We also note that part (b) of the

proposition shows that every space Hbθ
u , and therefore also the Grassmann manifold G2(W ) , is

of complex dimension 2 · (n− 2) .

Proof of Proposition 8.4. For (a). Because the fibres of θ̂ are equal to the orbits of the GL(C2)-

action R̂ , we have

Vbθ
u = kerTuθ̂ = Tu(θ̂

−1({θ̂(u)})) = Tu{ R̂(u,A) |A ∈ GL(C2) } .

Because R̂(u, ·) : GL(C2) → Ŝt2(W ) is the restriction of the linear map R̃(u, ·) : End(C2) →
L(C2,W ) to the open subset GL(C2) of End(C2) , the previous equation implies

−→
Vbθ
u = { R̃(u,X) |X ∈ End(C2) } ,

whence the first equals sign in (a) follows. The second equals sign is a consequence of the fact

that u : C2 → θ̂(u) is an isomorphism of linear spaces.

For (b). Let us abbreviate U := θ̂(u) . Then the orthogonal decomposition W = U 	 U⊥,W

induces an orthogonal decomposition

L(C2,W ) = L(C2, U) 	 L(C2, U⊥,W ) (8.9)

(where we interpret linear maps into U or into U⊥,W also as linear maps into W , and therefore

L(C2, U) and L(C2, U⊥,W ) as linear subspaces of L(C2,W ) ). Indeed, it follows from Equa-

tion (8.8) that the sum on the right-hand side of (8.9) is orthogonally direct, and the inclusion

“⊃” in (8.9) is obvious. For the opposite inclusion, we denote by

PU : W → U and QU : W → U⊥,W
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the orthogonal projection onto U resp. onto U⊥,W ; these maps are C-linear and PU +QU =

idW holds. Now let v ∈ L(C2,W ) be given, then we have vU := PU ◦ v ∈ L(C2, U) and

vU
⊥

:= QU ◦ v ∈ L(C2, U⊥,W ) , and vU + vU
⊥

= (PU +QU ) ◦ v = v holds.

The statement of (b) follows from Equation (8.9) because we have
−→
Vbθ
u = L(C2, U) by (a). �

We now reduce the structure group of the principal fibre bundle θ̂ to U(2) . Thereby we obtain

the principal fibre bundle θ := θ̂|St2(W ) : St2(W ) → G2(W ) with structure group U(2) , where

we have

St2(W ) := {u ∈ Ŝt2(W ) | u : C2 →W is a (linear) isometric immersion }

and U(2) acts on St2(W ) from the right by the action R := R̂|(St2(W )×U(2)) . In the sequel,

we regard the (non-complex) submanifold St2(W ) of Ŝt2(W ) as a Riemannian submanifold,

and in this regard, the elements of U(2) act on St2(W ) by isometries. It should also be noted

that St2(W ) is contained in the sphere S√
2(L(C2,W )) .

Let us denote by Vθ := ker(Tθ) and Hθ := (Vθ)⊥,TSt2(W ) the vertical resp. horizontal subbundle

of TSt2(W ) induced by the fibre bundle θ . Then we have for any u ∈ St2(W )

Vθu = Vbθ
u ∩ TuSt2(W ) and Hθ

u = Hbθ
u ; (8.10)

the latter equality holds because θ and θ̂ are fibre bundles over the same manifold G2(W ) .

We note that because the horizontal structure Hθ is U(2)-invariant, it is in fact a connection

in the sense of Ehresmann (meaning that curves in G2(W ) have a global Hθ-horizontal lift).

For any u ∈ St2(W ) , the map θ∗|Hθ
u : Hθ

u → Tθ(u)G2(W ) is an IR-linear isomorphism, and

therefore there exists one and only one real inner product on the linear space Tθ(u)G2(W ) so that

that map becomes a linear isometry. Because U(2) acts via R transitively and via isometries

on the fibres of θ , the real inner product on Tθ(u)G2(W ) obtained in this way does not depend

on the choice of u within any given fibre of θ . It follows that these inner products constitute a

Riemannian metric on G2(W ) (that it is indeed differentiable follows from the usual argument

involving local sections of θ ) which is characterized by the fact that θ : St2(W ) → G2(W )

becomes a Riemannian submersion.

Moreover, for any u ∈ St2(W ) , Hθ
u = Hbθ

u is a complex linear subspace of TuL(C2,W ) , and

because θ̂ is a holomorphic submersion, the complex structure Jθ(u) of G2(W ) at the point

θ(u) is conjugate under the linear isomorphism (θ̂∗|Hbθ
u) = (θ∗|Hθ

u) : Hθ
u → Tθ(u)G2(W ) to the

multiplication with i . Therefore Jθ(u) is orthogonal and skew-adjoint with respect to the inner

product on Tθ(u)G2(W ) . It follows that G2(W ) becomes a Hermitian manifold with its original

complex structure and the Riemannian metric just introduced. We regard it as such from now

on.

8.5 Proposition. G2(W ) is a Kähler manifold.

Proof. The proposition follows from the fact that G2(W ) is a Hermitian symmetric space (which

we will show below), but can also be shown directly using the fact that θ∗|Hθ : Hθ → TG2(W )
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behaves essentially like the differential of an affine map, as is exemplified by the O’Neill equations

([O’N83], Lemma 7.45, p. 212).

To state the proof in detail, let us denote by ∇G , ∇St and ∇L the Levi-Civita covariant

derivatives of G2(W ) , St2(W ) resp. L(C2,W ) , and by JG and JL the complex structures of

G2(W ) resp. L(C2,W ) .

Let a curve c : I → G2(W ) and a vector field X ∈ Xc(G2(W )) be given. Then we have to show

∇G
∂ J

GX = JG∇G
∂X . Because Hθ is a connection in the sense of Ehresmann, there exists a

global Hθ-horizontal lift c̃ : I → St2(W ) of c . We let X̃ ∈ Xec(St2(W )) be the Hθ-horizontal

lift of X along c̃ .

Because θ is the restriction of the holomorphic map θ̂ and we have Hθ
u = Hbθ

u for every

u ∈ St2(W ) , we see that

Hθ is JL-invariant and JL|Hθ is conjugate to JG under θ∗|Hθ . (8.11)

It follows that JLX̃ is the Hθ-horizontal lift of JGX .

Because of the Hθ-horizontality of c̃∗∂ , the O’Neill equation ([O’N83], Lemma 7.45, p. 212)

shows that the Hθ-component of ∇St
∂ X̃ equals the Hθ-horizontal lift of ∇G

∂X along c̃ , and

therefore we have

θ∗∇St
∂ X̃ = ∇G

∂X . (8.12)

Analogously, we have

θ∗∇St
∂ J

LX̃ = ∇G
∂ J

GX . (8.13)

Furthermore, let us denote by h the second fundamental form of St2(W ) ↪→ L(C2,W ) . Because

of the Gauss equation of first order and the fact that JL is ∇L-parallel, we then have

∇St
∂ J

LX̃ = ∇L
∂ J

LX̃ − h(JLX̃, ˙̃c)

= JL∇L
∂ X̃ − h(JLX̃, ˙̃c)

= JL∇St
∂ X̃ + JL h(X̃, ˙̃c)︸ ︷︷ ︸

(∗)

−h(JLX̃, ˙̃c)︸ ︷︷ ︸
(†)

. (8.14)

h(X̃, ˙̃c) is orthogonal to TSt2(W ) , in particular to Hθ ; because Hθ is JL-invariant (see (8.11)),

it follows that the term marked (∗) above is orthogonal to Hθ . Also, the vector field JLX̃ is

Hθ-valued, hence tangent to St2(W ) , and therefore the term marked (†) above is also orthogonal

to Hθ . Thus we obtain from (8.14):

θ∗∇St
∂ J

LX̃ = θ∗J
L∇St

∂ X̃ . (8.15)

Putting these results together, we get

∇G
∂ J

GX
(8.13)
= θ∗∇St

∂ J
LX̃

(8.15)
= θ∗J

L∇St
∂ X̃

(8.11)
= JGθ∗∇St

∂ X̃
(8.12)
= JG∇G

∂X . �23

23It is also possible to state the proof using global vector fields, rather than vector fields along curves. The

approach involving curves was chosen here because it can be applied analogously to prove that the quaternionic

structure we will construct on G2(W ) in Section 8.3 is parallel.
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8.6 Proposition. The Plücker embedding P : G2(W ) → IP(
∧2W ) is an isometric embedding.

Proof. Because P is an embedding by Proposition 8.3, it suffices to show that P is an isometric

immersion. Because the map P̃ : St2(W ) → ∧2W, u 7→ u1 ∧ u2 satisfies

P ◦ θ = π ◦ P̃ ,

and θ and π are Riemannian submersions, it suffices to show that for every given u ∈ St2(W ) ,

we have

P̃∗Hθ
u ⊂ Hπ

eP(u)
and ∀ξ, η ∈ Hθ

u : 〈P̃∗ξ, P̃∗η〉C = 〈ξ, η〉C . (8.16)

Here, Hθ
u and Hπ

eP(u)
denote the horizontal spaces of the Riemannian submersions θ and π at

the points u and P̃(u) , respectively; by Equation (8.10), Proposition 8.4(b), and Equation (1.6),

we have

Hθ
u = { ξ ∈ TuL(C2,W ) | −→ξ (C2) ⊥ u(C2) } , (8.17)

Hπ
eP(u)

= { ζ ∈ T eP(u)

∧2W | 〈−→ζ , P̃(u)〉C = 0 } . (8.18)

We also note that

∀ξ ∈ TuSt2(W ) :
−−→
P̃∗ξ = (

−→
ξ )1 ∧ u2 + u1 ∧ (

−→
ξ )2 (8.19)

holds. For the proof of the first part of (8.16), let ξ ∈ Hθ
u be given. Then we have

〈
−−→
P̃∗ξ,P(u)〉C

(8.19)
= 〈(−→ξ )1 ∧ u2 + u1 ∧ (

−→
ξ )2, u1 ∧ u2〉C

(8.6)
= 〈(−→ξ )1, u1〉C · 〈u2, u2〉C − 〈(−→ξ )1, u2〉C · 〈u2, u1〉C

+ 〈u1, u1〉C · 〈(−→ξ )2, u2〉C − 〈u1, u2〉C · 〈(−→ξ )2, u1〉C
(8.17)
= 0 ,

whence P̃∗ξ ∈ Hπ
eP(u)

follows by Equation (8.18).

For the proof of the second part of (8.16), we let ξ, η ∈ Hθ
u be given. Then we have

〈P̃∗ξ, P̃∗η〉C
(8.19)
= 〈(−→ξ )1 ∧ u2 + u1 ∧ (

−→
ξ )2, (

−→η )1 ∧ u2 + u1 ∧ (−→η )2〉C
= 〈(−→ξ )1 ∧ u2, (

−→η )1 ∧ u2〉C︸ ︷︷ ︸
=
(∗)

〈(−→ξ )1,(
−→η )1〉C

+ 〈(−→ξ )1 ∧ u2, u1 ∧ (−→η )2〉C︸ ︷︷ ︸
=
(∗)

0

+ 〈u1 ∧ (
−→
ξ )2, (

−→η )1 ∧ u2〉C︸ ︷︷ ︸
=
(∗)

0

+ 〈u1 ∧ (
−→
ξ )2, u1 ∧ (−→η )2〉C︸ ︷︷ ︸

=
(∗)

〈(−→ξ )2,(
−→η )2〉C

= 〈(−→ξ )1, (
−→η )1〉C + 〈(−→ξ )2, (

−→η )2〉C = 〈−→ξ ,−→η 〉LC ;

here the equals signs marked (∗) follow by a straightforward calculation from Equation (8.6),

the fact that (u1, u2) is a unitary system in W and the fact that we have 〈(−→ξ )µ, uν〉C =

〈(−→η )µ, uν〉C = 0 for µ, ν = 1, 2 (which is a consequence of Equation (8.17)). �
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G2(W ) is a homogeneous SU(W )-space via the transitive Lie group action

ϕ : SU(W ) ×G2(W ) → G2(W ), (B,U) 7→ B(U) .

This homogeneous space can be regarded as a Hermitian symmetric space in the following way:

We fix an origin point U0 ∈ G2(W ) and consider the linear involution S : W → W with

S|U0 = −idU0 , S|U⊥
0 = idU⊥

0
. Then σG2(W ) : SU(W ) → SU(W ), B 7→ SBS−1 is an involutive

Lie group automorphism, whose fixed point group Fix(σG2(W )) = {B ∈ SU(W ) |B(U0) = U0 }
coincides with the isotropy group of ϕ at U0 . Thus, (SU(W ), ϕ, U0, σG2(W )) is an affine

symmetric G2(W )-space, which turns out to be irreducible, of compact type, and Hermitian

symmetric with respect to the Hermitian metric described above.

We now specialize to the situation where W is a 4-dimensional oriented24 unitary space. Then

the restriction of the Hodge operator of
∧
W (see Section B.2) to

∧2W is an anti-linear map

∗ :
∧2W →

∧2W . In fact, Proposition B.2(c),(e) shows ∗ to be a conjugation on
∧2W , so∧2W becomes a CQ-space via the CQ-structure A := {λ · ∗ |λ ∈ S1 } .

8.7 Theorem. (a) The image of the Plücker embedding P : G2(W ) → IP(
∧2W ) is the 4-

dimensional complex quadric Q(∗) and f4 := (P : G2(W ) → Q(∗)) is a biholomorphic

isometry. Q(∗) will be called the Plücker quadric.

(b) For any B ∈ SU(W ) we have B(2) ∈ Auts(A)0 and

Φ : SU(W ) → Auts(A)0, B 7→ B(2)

is a two-fold covering map of Lie groups with kernel {±idW} . Consequently we have the

following isomorphy of Lie groups:

SU(4) ∼= Spin(6) . (8.20)

(c) (f4,Φ) is an almost-isomorphism of Hermitian symmetric spaces (as defined in Sec-

tion A.3) from the SU(W )-space G2(W ) to the Auts(A)0-space Q(∗) . Thus we have

shown the following almost-isomorphy of Hermitian symmetric spaces:

Q4 ∼= G2(C
4) .

Proof. For (a). Let us denote by ω ∈ ∧4W the positive unit 4-vector of W (see Section B.2).

Then we have for any ξ ∈ ∧2W \ {0} by Proposition 8.3:

π̂(ξ) ∈ P(G2(W )) ⇐⇒ ξ ∧ ξ = 0 ⇐⇒ ξ ∧ (∗ ∗ ξ) = 0

⇐⇒ 〈ξ, ∗ξ〉C · ω = 0 ⇐⇒ 〈ξ, ∗ξ〉C = 0 ⇐⇒ ξ ∈ Q̂(∗)

(also see Proposition B.2(a)). This shows that P(G2(W )) = Q(∗) holds. It is also a consequence

of Propositions 8.3 and 8.6 that f4 is a biholomorphic isometry.

24As was explained in the Introduction, we apply the concept of an orientation also to complex linear spaces.
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For (b). Let B ∈ SU(W ) be given, then we have B (2) ∈ U(
∧2W ) . Let (w1, . . . , w4) be

any positively oriented unitary basis of W , then (Bw1, . . . , Bw4) is another positively oriented

unitary basis of W and with help of Proposition B.2(b) we get

B(2)(∗(w1 ∧ w2)) = B(2)(w3 ∧ w4) = Bw3 ∧Bw4 = ∗(Bw1 ∧Bw2) = ∗B(2)(w1 ∧ w2) .

Because
∧2W possesses a basis (ξj) where each ξj is of the form w1 ∧ w2 with a unitary

2-frame (w1, w2) , and any such 2-frame can be extended to a positively oriented unitary basis

(w1, . . . , w4) of W , it follows that B(2) ◦ ∗ = ∗ ◦ B(2) and thus B(2) ∈ Auts(A) holds.

Therefore, we can define the Lie group homomorphism Φ as in the proposition as a map into

Auts(A) . Because SU(W ) is connected Φ in fact maps into Auts(A)0 . The theorem of Beez

(Proposition B.1) shows that the kernel of Φ is {±idW} , and therefore Φ is a two-fold covering

map of Lie groups onto its image. Auts(A)0 is isomorphic to SO(V (∗)) ∼= SO(6) , and therefore

we have dimAuts(A)0 = 15 = dimSU(W ) , whence it follows that the image of Φ is Auts(A)0 .

It now also follows that the two-fold covering map Φ induces an isomorphism SU(W ) → Spin(6)

“over” Φ .

For (c). From the definitions of f4 and Φ one sees immediately that (f4,Φ) is an almost-

isomorphism of homogeneous spaces from the SU(W )-space G2(W ) onto the Auts(A)0-space

Q(∗) . Because the Lie groups SU(W ) and Auts(A)0 are of compact type, Proposition A.5

shows that (f4,Φ) is an almost-isomorphisms of affine symmetric spaces; because f4 is also a

holomorphic isometry, (f4,Φ) is in fact an almost-isomorphism of Hermitian symmetric spaces.

�

8.3 G2(C
n) and Q4 as quaternionic Kähler manifolds

The complex 2-Grassmannians G2(C
n) can be equipped with a quaternionic Kähler structure

which is compatible with the complex structure of these spaces. A construction of this quater-

nionic Kähler structure has been given by J. Berndt in [Ber97]. In the present section, I present

this construction in a simplified way, which is based on a discussion with Prof. H. Reckziegel.

As we saw in Section 8.2, the complex quadric Q4 is as a Hermitian symmetric space isomorphic

to G2(C
4) , and therefore it follows that also Q4 can be equipped with a quaternionic Kähler

structure compatible with its complex structure. It will be proven that this quaternionic Kähler

structure on Q4 is also compatible with its CQ-structure.

8.8 Definition. (a) Let V be a euclidean space. Then a 3-dimensional linear subspace J ⊂
End−(V ) is called a quaternionic structure on V if there is a basis (J1, J2, J3) of J

which satisfies

∀k ∈ {1, 2, 3} :
(
Jk ◦ Jk = −idV and Jk ◦ Jk+1 = −Jk+1 ◦ Jk = Jk+2

)
(8.21)

(where the indices are to be read modulo 3 ). Any such basis of J is called a canonical

basis of J . If V is equipped with a fixed quaternionic structure, we call (V, J) or simply

V a quaternionic euclidean space.
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(b) Let M be a Riemannian manifold. Then a quaternionic Kähler structure on M is a

rank 3 subbundle J of the bundle End−(TM) of skew-adjoint endomorphisms with the

following properties:

(i) For every p ∈M , Jp is a quaternionic structure on the euclidean space TpM .

(ii) J is parallel with respect to the Levi-Civita covariant derivative ∇ of M , i.e.

∀J ∈ Γ(J), X ∈ X(M) : ∇XJ ∈ Γ(J) .

If M is equipped with a fixed quaternionic Kähler structure J , we call (M, J) (or shortly

M ) a quaternionic Kähler manifold.

(c) We call a Kähler manifold M a C&IH-Kähler manifold if it is additionally equipped with a

quaternionic Kähler structure J in such a way that the transformations in Jp are C-linear

for every p ∈M .

8.9 Remarks. (a) Suppose that (V, J) is a quaternionic euclidean space, let us fix a canonical

basis (J1, J2, J3) of J , and equip the IR-linear space J with the inner product and the

orientation so that (J1, J2, J3) becomes a positively oriented, orthonormal basis of J .

Then it can be shown that another basis (J ′
1, J

′
2, J

′
3) of J is a canonical basis if and only

if it is a positively oriented, orthonormal basis. In particular, the inner product and the

orientation with which we equipped J does not depend on the choice of the canonical

basis (J1, J2, J3) .

(b) Quaternionic euclidean spaces (V, J) can be interpreted as left-modules over the skew-field

of quaternions in the following way: We regard the 3-dimensional, IR-linear space J as

an oriented, euclidean space as in (a), and denote by J × J → J, (J1, J2) 7→ J1 × J2 the

cross product map thereby induced; this map is characterized by being bilinear and skew-

symmetric and having the following property: for any orthonormal system (J1, J2) in J ,

(J1, J2, J1 × J2) is a positively oriented, orthonormal basis of J , and hence a canonical

basis by (a).

Now consider the 4-dimensional linear space J̃ := IR idV ⊕ J . Then the composition of

elements of J̃ is explicitly described by the equation

∀c, c′ ∈ IR, J, J ′ ∈ J : (c idV +J)◦ (c′ idV +J ′) = (c c′−〈J, J ′〉J) · idV +c J ′ +c′J+J×J ′ ;

this equation is shown by representing J and J ′ in components with respect to a canonical

basis of J .

It follows that (J̃,+, ◦) is a skew-field which is isomorphic to the skew-field of quaternions,

and V becomes a J̃-left-module by the definition

∀J̃ ∈ J̃, v ∈ V : J̃ · v := J̃(v) .

It is a consequence of this interpretation of V that we necessarily have dimIR V = 4r ,

r ∈ IN . The number r is called the quaternionic dimension of V .
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We will now construct a quaternionic Kähler structure on G2(C
n) so that G2(C

n) becomes

a C&IH-Kähler manifold. For this purpose, we return to the general situation of the previous

section, where W is a unitary space of arbitrary dimension n .

We denote by IH the model of the skew-field of quaternions as a real subalgebra of End(C2) .

Specifically, we have

IH =
{ (

a b
−b a

) ∣∣∣ a, b ∈ C
}
, (8.22)

where we identify complex (2× 2)-matrices with the endomorphisms on C2 they describe with

respect to the canonical basis of C2 . The addition on IH is given by the addition of End(C2) and

the multiplication on IH is given by composition of linear maps (see [BtD85], p. 5f.). Moreover,

the real part map Re : IH → IR, q 7→ Re(q) and the conjugation map IH → IH, q 7→ q are given

by

∀q ∈ IH :
(
q =

(
a b
−b a

)
=⇒ Re(q) = Re(a) , q =

(
a −b
b a

) )
. (8.23)

Note that q is the adjoint matrix of q ; for this reason we have in particular

∀q, q′ ∈ IH : q · q′ = q′ · q . (8.24)

The subfield { q ∈ IH | q = q } of IH is isomorphic to IR , and we regard IR as a subfield

of IH in this way. Im(IH) := { q ∈ IH | Re(q) = 0 } is a 3-dimensional linear subspace of IH

complementary to IR ⊂ IH . The members of IR ⊂ IH and Im(IH) are called real resp. imaginary

quaternions. We call a basis (i, j, k) of Im(IH) a canonical basis of Im(IH) if

i2 = j2 = k2 = ijk = −1 (8.25)

holds; then we also have

ij = −ji = k , jk = −kj = i and ki = −ik = j . (8.26)

For any orthonormal system (i, j) in Im(IH) , (i, j, ij) is a canonical basis of Im(IH) .

It should also be noted that IH becomes a euclidean space via the inner product given by

∀q, q′ ∈ IH : 〈q, q′〉 := Re(q · q′) .

Then S(IH) = SU(2) holds.

In what follows, the action

χ : U(2) × End(C2) → End(C2), (A,X) 7→ A ◦X ◦ A−1

will be of importance. For A ∈ SU(2) = S(IH) , χ(A, ·) leaves IH invariant (remember that

the multiplication of IH is given by the composition of endomorphisms of C2 ); moreover,

as it is well-known, χ(A, ·)|IH is an orthogonal transformation on IH which leaves Im(IH)

invariant, and the map SU(2) → SO(Im(IH)), A 7→ χ(A, ·)| Im(IH) is “the” universal covering

of SO(Im(IH)) ∼= SO(3) . Furthermore, we have for any A ∈ SU(2) = S(IH) A−1 = A and

therefore for any q ∈ IH

χ(A, q) = A ◦ q ◦A−1 = A ◦ q ◦ A (8.24)
= A ◦ q ◦A−1 = χ(A, q) .
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We also have

∀A ∈ U(2), λ ∈ S1 : χ(λA, ·) = χ(A, ·) . (8.27)

For any given A ∈ U(2) we have λA ∈ SU(2) , where λ ∈ S1 is chosen such that λ−2 = det(A)

holds. By application of the preceding results to λA and use of Equation (8.27), it therefore

follows that even for every A ∈ U(2) , χ(A, ·)|IH is an orthogonal transformation on IH leaving

Im(IH) invariant and that

∀A ∈ U(2), q ∈ IH : χ(A, q) = χ(A, q) . (8.28)

holds.

We now turn L(C2,W ) into a left-IH-linear space by the definition

∀q ∈ IH, u ∈ L(C2,W ) : q · u := R̃(u, q) = u ◦ q , (8.29)

where R̃ is defined in (8.7). Thereby every q ∈ IH gives rise to a complex vector bundle

endomorphism JLq : TL(C2,W ) → TL(C2,W ) characterized by

∀ξ ∈ TL(C2,W ) :
−−−→
JLq (ξ) = q · −→ξ . (8.30)

In the case u ∈ St2(W ) , JLq leaves the horizontal space Hθ
u of the fibre bundle θ : St2(W ) →

G2(W ), u 7→ u(C2) (see Proposition 8.4(b) and Equation (8.10)) invariant, and therefore there

exists one and only one C-linear transformation Jq,u : Tθ(u)G2(W ) → Tθ(u)G2(W ) such that

(θ∗|Hθ
u) ◦ (JLq |Hθ

u) = Jq,u ◦ (θ∗|Hθ
u) (8.31)

holds; moreover

Ju := { Jq,u | q ∈ Im(IH) }

is a quaternionic structure on the euclidean space Tθ(u)G2(W ) . To show that the quater-

nionic structures defined in this way give rise uniquely to a rank-3-subbundle of the bundle

End−(TG2(W )) , we need to show that Ju does not depend on the representant u chosen

within a fibre of θ . For this purpose, we describe the transformation behaviour of the maps

Jq,u :

8.10 Proposition. Let u, u′ ∈ St2(W ) with θ(u) = θ(u′) and q ∈ Im(IH) be given. Then there

exists a unique q′ ∈ Im(IH) so that

Jq,u′ = Jq′,u

holds; this q′ is given by

q′ = A ◦ q ◦ A−1 ,

if u′ = u ◦A holds with some A ∈ U(2) .

For the proof of this proposition see below.

Proposition 8.10 shows that Ju does not depend on the choice of u within any fibre of θ . There-

fore there exists a family J := (JU )U∈G2(W ) of 3-dimensional linear subspaces so that Jθ(u) = Ju
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holds for every u ∈ St2(W ) . To show that J is in fact a differentiable vector subbundle of

End−(TG2(W )) we let a local section σ : D → End−(TG2(W )) (where D ⊂ G2(W ) is an

open subset) be given, fix q ∈ Im(IH) and consider the map S : D → End−(TG2(W )), U 7→ SU
characterized by

∀U ∈ D :
(
SU ∈ End−(TUG2(W )) and (θ∗ ◦ JLq )|Hθ

σ(U) = (SU ◦ θ∗)|Hθ
σ(U)

)
. (8.32)

It is clear that S maps into J|D , and we will show below that S is differentiable and therefore

a local section in the bundle End−(TG2(W )) → G2(W ) . By letting q run through a basis of

Im(IH) , one then obtains a local basis field of J over D , and this shows that J is indeed a

differentiable vector subbundle of End−(TG2(W )) .

To show that S is differentiable, we let a vector field X ∈ X(D) be given, and let X̃ be the

Hθ-horizontal lift of X with respect to θ , i.e. the vector field X̃ ∈ Γ(Hθ
|θ−1(D)) characterized

by

X ◦ (θ|θ−1(D)) = θ∗ ◦ X̃ . (8.33)

Then we have for every U ∈ D

SU (XU ) = SU (Xθ(σ(U)))
(8.33)
= (SU ◦ θ∗)(X̃σ(U))

(8.32)
= (θ∗ ◦ JLq )X̃σ(U) .

We see from this calculation that D → TG2(W ), U 7→ SU (XU ) is a differentiable vector field,

and it follows that S is differentiable.

8.11 Remark. Proposition 8.10 also shows that the bundle J is associated with the principal fibre

bundle θ : St2(W ) → G2(W ) with structure group U(2) via the association map

ρ : St2(W ) × Im(IH) → J, (u, q) 7→ Jq,u ; (8.34)

its typical fibre is Im(IH) , which we consider with the action χ|(U(2) × Im(IH)) from the left

(see [Bou67], Section 6.5.1).

Proof of Proposition 8.10. Because U(2) acts via R simply transitively on the fibres of θ , there

exists a unique A ∈ U(2) so that u′ = RA(u) = u ◦ A holds, and it follows from the preceding

consideration that q′ := χ(A, q) ∈ Im(IH) holds.

Now, we have (RA)∗Hθ
u = Hθ

u′ and for every ξ ∈ Hθ
u

−−−−−−−−−−−−−−−−−−−−−−→
(TuR

A|Hθ
u)

−1 ◦ JLq ◦ TuRA(ξ) =
−−−−−−−−−→
JLq ◦ TuRA(ξ) ◦ A−1 =

−−−−−→
TuR

A(ξ) ◦ q ◦ A−1 =
−→
ξ ◦ A ◦ q ◦ A−1

=
−→
ξ ◦ χ(A, q)

(8.28)
=

−→
ξ ◦ χ(A, q) =

−→
ξ ◦ q′ =

−−−→
JLq′(ξ) ,

whence

(TuR
A|Hθ

u)
−1 ◦ (JLq |Hθ

u′) ◦ (TuR
A|Hθ

u) = (JLq′ |Hθ
u) (8.35)

follows.

By linearization of the equation θ = θ ◦ (RA)−1 , we obtain

(Tu′θ|Hθ
u′) = (Tuθ|Hθ

u) ◦ (TuR
A|Hθ

u)
−1 ,
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and the definition of Jq,u′ together with this equation yields

Jq,u′ = (Tu′θ|Hθ
u′) ◦ (JLq |Hθ

u′) ◦ (Tu′θ|Hθ
u′)

−1

= (Tuθ|Hθ
u) ◦ (TuR

A|Hθ
u)

−1 ◦ (JLq |Hθ
u′) ◦ (TuR

A|Hθ
u) ◦ (Tuθ|Hθ

u)
−1 . (8.36)

The result is now obtained by plugging Equation (8.35) into Equation (8.36). �

8.12 Proposition. J is a quaternionic Kähler structure, and by equipping G2(W ) with the Kähler

structure from Section 8.2 and the mentioned quaternionic Kähler structure, it becomes a C&IH-

Kähler manifold.

Proof. It only remains to show that the subbundle J of End−(TG2(W )) is parallel with respect

to the Levi-Civita covariant derivative ∇G of G2(W ) . For this, it suffices to show that for any

curve c : I → G2(W ) , any Hθ-horizontal lift c̃ : I → St2(W ) of c and any q ∈ Im(IH) , the

endomorphism field J(t) := Jq,ec(t) is ∇G-parallel, and this is done analogously as in the proof

of Proposition 8.5. �

8.13 Remark. There are two ways to construct a covariant derivative on the vector bundle J : First,

the U(2)-invariant connection (Hθ) of the principal fibre bundle θ induces a connection (HJ)

on J via the association map ρ of Equation (8.34) (see Remark 8.11). (HJ) is induced by a

covariant derivative on J ; this is a consequence of the fact that ∀c ∈ IR, J ∈ J : HJ
c J = Thc(HJ

J)

holds with hc : J → J, J 7→ c J (see [Poo81], Definition 2.26, p. 54 and Theorem 2.52,

p. 74). Second, one can consider the Levi-Civita covariant derivative on G2(W ) , which induces

a covariant derivative ∇End on the endomorphism bundle End(TG2(W )) → G2(W ) ; J is a

∇End-parallel subbundle of the latter bundle by Proposition 8.12, and therefore the restriction

of ∇End gives a covariant derivative on J .

The proof of Proposition 8.12 shows that these two constructions in fact give rise to the same

covariant derivative on J .

8.14 Remark. As has been shown by Berndt (see [Ber97], Section 10, Theorem 2), the curvature

tensor RG2(W ) of G2(W ) can be described via the Riemannian metric 〈·, ·〉 , the complex

structure J and the quaternionic structure J of this Grassmannian: For any U ∈ G2(W ) and

any canonical basis (J1, J2, J3) of JU , we have

∀u, v, w ∈ TpG2(W ) : RG2(W )(u, v)w =〈v, w〉u − 〈u,w〉v
+ 〈Jv,w〉Ju − 〈Ju,w〉Jv − 2〈Ju, v〉Jw

+

3∑

µ=1

(
〈Jµv, w〉Jµu− 〈Jµu,w〉Jµv − 2〈Jµu, v〉Jµw

)

+
3∑

µ=1

(
〈JµJv,w〉JµJu− 〈JµJu,w〉JµJv

)
.
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As we did in the previous section, we now specialize to the situation where dimW = 4 holds, and

W is additionally equipped with a complex orientation. Then we have the Hodge operator ∗ :∧2W → ∧2W which is a conjugation on
∧2W , the Plücker quadric Q(∗) and the holomorphic

isometry f4 : G2(W ) → Q(∗) from Theorem 8.7. We now use f4 to transfer the quaternionic

Kähler structure J of G2(W ) onto Q(∗) , thereby obtaining the quaternionic Kähler structure

JQ on Q(∗) given by

∀U ∈ G2(W ) : J
Q
f4(U)

= {TUf4 ◦ J ◦ (TUf4)
−1 | J ∈ JU } .

In this way also Q(∗) becomes a C&IH-Kähler manifold.

8.15 Proposition. The quaternionic Kähler structure JQ is compatible with the CQ-structures on

TQ(∗) in the sense that we have

∀p ∈ Q(∗), A ∈ A(Q(∗), p), J ∈ JQp : J ◦A = A ◦ J . (8.37)

Proof. Let p ∈ Q(∗) and A ∈ A(Q(∗), p) be given, and choose z ∈ π−1({p}) so that

∀v ∈ Hπ
zQ(∗) :

−−−−−−−−−−−−−−−−−−−→
((π∗|Hπ

zQ(∗))−1 ◦A ◦ π∗)v = ∗−→v (8.38)

holds (see Theorem 1.16 and Proposition 1.15).

We consider the surjective map f̃4 : St2(W ) → Q̃(∗), u 7→ u1 ∧ u2 which we already used in

the proof of Proposition 8.6, and choose u ∈ St2(W ) so that f̃4(u) = z holds. The map f̃4

satisfies π ◦ f̃4 = f4 ◦ θ and

∀ ξ ∈ TuSt2(W ) :
−−−→
(f̃4)∗ξ = (

−→
ξ )1 ∧ u2 + u1 ∧ (

−→
ξ )2 (8.39)

(see Equation (8.19)), moreover (Tuf̃4|Hθ
u) : Hθ

u → Hπ
zQ(∗) is a C-linear isometry (see (8.16)).

In the sequel three isomorphic spaces are of importance: First, the horizontal space Hπ
zQ(∗)

belonging to π . Second, the horizontal space Hθ
u belonging to θ , which is related to Hπ

zQ(∗)
by the C-linear isometry (Tuf̃4|Hθ

u) : Hθ
u → Hπ

zQ(∗) . Third, the C-linear space End(C2) ,

which is isomorphic to Hθ
u in the following way: Let us extend the unitary system (u1, u2) to

a positively oriented unitary basis (u1, u2, u3, u4) of W and consider the element u⊥ ∈ St2(W )

characterized by (u⊥)1 = u3 and (u⊥)2 = u4 . Then u⊥ : C2 → θ(u)⊥ is a C-linear isometry,

and the map Lθ : End(C2) → Hθ
u determined by

∀X ∈ End(C2) :
−−−−→
Lθ(X) = u⊥ ◦X

is an isomorphism of C-linear spaces (see Equation (8.10) and Proposition 8.4(b)).

We now use the linear isomorphisms Lθ and Lπ := (Tuf̃4|Hθ
u) ◦ Lθ : End(C2) → Hπ

zQ(∗) to

transfer the relevant transformations onto End(C2) . Specifically, we define for q ∈ Im(IH) the

C-linear map Ĵq : End(C2) → End(C2) by

∀X ∈ End(C2) : Lθ(Ĵq(X)) = JLq (Lθ(X)) ;
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we also define the anti-linear map Â : End(C2) → End(C2) by

∀X ∈ End(C2) :
−−−−−−−→
Lπ(Â(X)) = ∗

−−−−→
Lπ(X) . (8.40)

For the proof of Equation (8.37), it then suffices to show

Ĵq ◦ Â = Â ◦ Ĵq (8.41)

because of Equation (8.38).

To prove Equation (8.41), we derive explicit representations of Ĵq and of Â . We have

∀X ∈ End(C2) : Ĵq(X) = X ◦ q (8.42)

because of the definition of JLq (see Equations (8.30) and (8.29)), and we will show below that

∀X ∈ End(C2) : Â(X) = α ◦D ◦X ◦D ◦ α (8.43)

holds, where α : C2 → C2 is the canonical conjugation of C2 , and D : C2 → C2 is the C-linear

map characterized by De1 = e2 and De2 = −e1 . From Equations (8.42) and (8.43) we then

obtain for arbitrary X ∈ End(C2)

(Ĵq ◦ Â)(X) = α ◦D ◦X ◦D ◦ α ◦ q and (Â ◦ Ĵq)(X) = α ◦D ◦X ◦ q ◦D ◦ α .

For the verification of Equation (8.41), it therefore suffices to show

D ◦ α ◦ q = q ◦D ◦ α .

Because both sides of the latter equation are anti-linear, it only has to be checked for e1 and

e2 , and this is easily done via a direct calculation involving the definitions of D and α , and

Equation (8.23).

Thus, it only remains to prove Equation (8.43). For this purpose let X ∈ End(C2) be given;

suppose that X is represented by the matrix ( c11 c12c21 c22 ) with respect to the canonical basis of

C2 . Then ξ := Lθ(X) ∈ Hθ
u is given by

(
−→
ξ )1 = c11 u3 + c21 u4 and (

−→
ξ )2 = c12 u3 + c22 u4 ,

and hence, v := Lπ(X) ∈ Hπ
zQ(∗) is given by

−→v =
−−−−−→
(f̃4)∗(ξ)

(8.39)
= (c11 u3 + c21 u4) ∧ u2 + u1 ∧ (c12 u3 + c22 u4)

= −c11 u2 ∧ u3 − c21 u2 ∧ u4 + c12 u1 ∧ u3 + c22 u1 ∧ u4 .

By Example B.3, we now obtain

−−−−−−−−−−−→
(f̃4)∗ Lθ(Â(X)) =

−−−−−−−→
Lπ(Â(X))

(8.40)
= ∗−→v

= −c11 u1 ∧ u4 + c21 u1 ∧ u3 − c12 u2 ∧ u4 + c22 u2 ∧ u3

= (−c22 u3 + c12 u4) ∧ u2 + u1 ∧ (c21 u3 − c11 u4)
(8.39)
=

−−−−→
(f̃4)∗η , (8.44)
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where η ∈ TuSt2(W ) is characterized by

(−→η )1 = −c22 u3 + c12 u4 and (−→η )2 = c21 u3 − c11 u4 ,

and therefore by
−→η = u⊥ ◦ α ◦D ◦X ◦D ◦ α . (8.45)

The latter representation shows that η ∈ Hθ
u holds, and from (8.44) we see

Lθ(Â(X)) = η . (8.46)

Equation (8.43) now follows from (8.46) and (8.45) by the definition of Lθ . �

8.4 Q3 is isomorphic to Sp(2)/U(2)

The subject of this section is the series of Hermitian symmetric spaces Sp(r)/U(r) and the

fact that this series intersects with the series of complex quadrics at Sp(2)/U(2) ∼= Q3 . First,

we show how the Hermitian symmetric space Sp(r)/U(r) can be realized as a Sp(r)-orbit M

in Gr(C
2r) ; M is a Hermitian symmetric subspace of that complex Grassmannian. Then we

specialize to the case r = 2 . In this case, M is contained in the Grassmannian G2(C
4) , which

is mapped holomorphic isometrically onto the Plücker quadric Q(∗) by the Plücker embedding

P : G2(C
4) → IP(

∧2C4) , as we saw in Section 8.2. We will show that P maps the orbit

M ∼= Sp(2)/U(2) onto a 3-dimensional, totally geodesic complex subquadric of Q(∗) .

For the first part of the section, we return to the general situation of Section 8.2, where W is a

unitary space of arbitrary dimension. But now we suppose dimW = n = 2r to be even. We fix

some symplectic (i.e. non-degenerate, alternating, C-bilinear) form ω on W which is coupled

to the inner product of W in the following way: The anti-linear map τ : W →W characterized

by

∀w,w′ ∈W : ω(w,w′) = 〈w, τ(w′)〉C (8.47)

is orthogonal with respect to the real inner product 〈·, ·〉IR := Re(〈·, ·〉C) on W and therefore

satisfies

∀w,w′ ∈W : 〈τ(w), τ(w′)〉C = 〈w,w′〉C . (8.48)

Then τ also satisfies τ 2 = −idW , because we have for every w,w′ ∈W

〈w, τ2(w′)〉C
(8.47)
= ω(w, τ(w′)) = −ω(τ(w′), w)

(8.47)
= −〈τ(w′), τ(w)〉C

(8.48)
= −〈w′, w〉C = −〈w,w′〉C .

In order to establish that such a symplectic form ω exists, we choose a unitary basis

(w1, . . . , w2r) of W , define an anti-linear bijection τ : W →W by

∀µ ∈ {1, . . . , r} :
(
τ(wµ) = wr+µ and τ(wr+µ) = −τ(wµ)

)
,

and a C-bilinear form ω by

ω : W ×W → C, (w,w′) 7→ 〈w, τ(w′)〉C .
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Then τ satisfies τ 2 = −idW and Equation (8.48), and therefore we have for any w,w ′ ∈W

ω(w,w′) = 〈w, τ(w′)〉C = 〈τ(w), τ 2(w′)〉C = −〈τ(w), w′〉C = −〈w′, τ(w)〉C = −ω(w′, w) ,

whence it follows that ω is a symplectic form on W with the desired property.

Through the symplectic form ω , W becomes a right-linear space over the skew-field of quater-

nions in the following way: As in Section 8.3, we denote by IH the model of the skew-field of

quaternions as a subalgebra of End(C2) , see Equation (8.22). We regard C as a subfield of IH

by identifying z ∈ C with ( z 0
0 z ) ∈ IH . Then, with

i =
(
i 0
0 −i

)
, j :=

(
0 1
−1 0

)
and k := i · j =

(
0 i
i 0

)
,

(i, j, k) is a canonical basis of Im(IH) , and we have

IH = { z + z′ · j | z, z′ ∈ C }

and

∀z ∈ C : j · z = z · j .

W becomes an IH-right-linear space by the definition

∀w ∈W, z, z′ ∈ C : w · (z + z′ j) := z w + z′ τ(w) . (8.49)

Note that this multiplication extends the multiplication of the C-linear space W and that

multiplication with j is equivalent to the application of τ . Regarded in this way, the dimension

of W over IH is r .

Furthermore, we introduce a symplectic inner product 〈·, ·〉IH on W by

∀w,w′ ∈ IH : 〈w,w′〉IH := 〈w,w′〉C − ω(w,w′) · j . (8.50)

It should be noted that 〈·, ·〉IH is IH-linear in its second entry (as is customary for symplectic

inner products), whereas with regard to the first entry it is additive and satisfies

∀w,w′ ∈W, q ∈ IH : 〈w q,w′〉IH = q · 〈w,w′〉IH .

A basis (w1, . . . , wr) of the IH-linear space W is called a symplectic basis of (W, 〈·, ·〉IH) if

∀µ, ν ∈ {1, . . . , r} : 〈wµ, wν〉IH = δµν

holds (where δµν is the Kronecker symbol). Such bases of W do indeed exist, see [Art57],

p. 136f.

The symplectic inner product 〈·, ·〉IH gives rise to the symplectic group

Sp(W ) := {B : W →W | B is IH-linear and ∀w,w′ ∈W : 〈Bw,Bw′〉IH = 〈w,w′〉IH } ;

as is well-known, this is a connected Lie group of dimension r(2r + 1) (see [Che46], Chap. I,

§VIII, Proposition 2, p. 23 and Chap. II, §V, Proposition 3, p. 37).
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8.16 Proposition. Sp(W ) = {B ∈ SU(W ) |B ◦ τ = τ ◦ B } = {B ∈ U(W ) |B ◦ τ = τ ◦ B } ;

moreover, every B ∈ Sp(W ) leaves ω invariant.

Proof. For the first part of the proposition, it suffices to show

Sp(W ) ⊂ {B ∈ SU(W ) |B ◦ τ = τ ◦B } (8.51)

and

{B ∈ U(W ) |B ◦ τ = τ ◦ B } ⊂ Sp(W ) . (8.52)

For the proof of (8.51), let B ∈ Sp(W ) be given. Because of the IH-linearity of B , we have for

every w ∈W

B(τw) = B(w · j) = (Bw) · j = τ(Bw)

and therefore B ◦ τ = τ ◦B .

Moreover, with the projection P : IH → C, z + z ′ j 7→ z we have for any w,w′ ∈W

〈Bw,Bw′〉C
(8.50)
= P (〈Bw,Bw′〉IH) = P (〈w,w′〉IH)

(8.50)
= 〈w,w′〉C

and therefore B ∈ U(W ) .

We now see that B leaves ω invariant:

ω(Bw,Bw′) = 〈Bw, τ(Bw′)〉C = 〈Bw,B(τ w′)〉C = 〈w, τ(w′)〉C = ω(w,w′) .

Therefore B also leaves the 2r-form ψ := ω ∧ . . . ∧ ω ( r factors) on W invariant. Because ψ

is a volume form25 on W , B ∈ SU(W ) follows. Thus it is shown that B lies in the right-hand

side set of (8.51).

For the proof of (8.52), let B ∈ U(W ) with B ◦ τ = τ ◦ B be given. Then we have for every

w ∈W and q ∈ IH , say q = z + z ′ j with z, z′ ∈ C

B(w · q) (8.49)
= B(z w + z′ τ(w)) = z Bw + z′B(τ(w)) = z Bw + z′ τ(Bw)

(8.49)
= (Bw) · q ;

therefore B is IH-linear. Moreover, we have for every w,w ′ ∈W :

〈Bw,Bw′〉IH
(8.50)
= 〈Bw,Bw′〉C − ω(Bw,Bw′) · j
= 〈w,w′〉C − 〈Bw, τ(Bw′)〉C · j = 〈w,w′〉C − 〈Bw,B(τw′)〉C · j

= 〈w,w′〉C − 〈w, τw′〉C · j = 〈w,w′〉C − ω(w,w′) · j (8.50)
= 〈w,w′〉IH .

Ergo, B ∈ Sp(W ) holds. �

25For the proof that ψ is a volume form, we fix a symplectic basis (u1, . . . , ur) of W . Then

(u1, . . . , ur, τ (u1), . . . , τ (ur)) is a unitary basis of W , and if we denote by (α1, . . . , α2r) the dual basis of W ∗ ,

we have ω = −
Pr

µ=1 αµ ∧αµ+r . From this representation, it follows that ψ = ± r! · (α1 ∧ · · · ∧ α2r) is a volume

form on W .
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8.17 Remark. The symplectic structure on W singles out a complex orientation on W : There is

exactly one complex orientation on W such that for every symplectic basis (w1, . . . , wr) of W ,

the unitary basis (w1, . . . , wr, τ(w1), . . . , τ(wr)) of W is positively oriented.

Indeed, if ψ is a complex volume form on W , and (w1, . . . , wr) and (w′
1, . . . , w

′
r) are two

symplectic bases of W , then there exists B ∈ Sp(W ) with B(wk) = w′
k ; we have B ◦ τ = τ ◦B

and det(B) = 1 by Proposition 8.16, whence

ψ(w′
1, . . . , w

′
r, τ w

′
1, . . . , τ w

′
r) = ψ(Bw1, . . . , Bwr, τ(Bw1), . . . , τ(Bwr))

= ψ(Bw1, . . . , Bwr, B(τ w1), . . . , B(τ wr)) = ψ(w1, . . . , wr, τ w1, . . . , τ wr)

follows. Thus, the unitary bases (w1, . . . , wr, τ(w1), . . . , τ(wr)) and (w′
1, . . . , w

′
r,

τ(w′
1), . . . , τ(w

′
r)) of W are of the same orientation.

8.18 Proposition. (a) The set

M := {Y ∈ Gr(W ) | τ(Y ) ⊥ Y }

is an orbit of the canonical action of Sp(W ) on Gr(W ) .

(b) M is a complex submanifold of the complex Grassmannian Gr(W ) . We have dimC(M) =
1
2 r(r + 1) .

(c) Let Y ∈ M be given and denote by K the isotropy group of the action of Sp(W ) on

Gr(W ) at Y . Then

Ψ : K → U(Y ), B 7→ B|Y

is an isomorphism of Lie groups.

(d) M is a Hermitian symmetric subspace of the Hermitian symmetric space Gr(W ) , and

therefore a connected, complete, totally geodesic submanifold of Gr(W ) . As Hermitian

symmetric space, M is isomorphic to the symmetric space Sp(r)/U(r) of type CI, see

[Hel78], p. 518.

Proof. Throughout the proof, it should be kept in mind that because of dimW = 2r , we have

for any Y ∈ Gr(W )

τ(Y ) ⊥ Y ⇐⇒ τ(Y ) = Y ⊥ ⇐⇒ W = Y 	 τ(Y ) .

For (a). Let us consider the Stiefel manifold Str(W ) ⊂ L(Cr,W ) of unitary r-frames in W ,

the canonical projection θ : Str(W ) → Gr(W ), u 7→ u(Cr) and

M̃ := {u ∈ Str(W ) | (u1, . . . , ur) is a symplectic basis of (W, 〈·, ·〉IH) } 6= ∅ ,

where we put uµ := u(eµ) for any u ∈ L(Cr,W ) and µ ∈ {1, . . . , r} ; (e1, . . . , er) is the

canonical basis of Cr . Immediately, we will show

θ−1(M) = M̃ . (8.53)
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Because M̃ is an orbit of the Lie group action

Sp(W ) × Str(W ) → Str(W ), (B, u) 7→ B ◦ u

and θ : Str(W ) → Gr(W ) is Sp(W )-equivariant, it then follows from Equation (8.53) that M

is an orbit of the action of Sp(W ) on Gr(W ) .

For the proof of Equation (8.53): First, let u ∈ θ−1(M) be given. With Y := θ(u) ∈ M , we

then have τ(Y ) = Y ⊥ and therefore for any µ, ν ∈ {1, . . . , r}

〈uµ, uν〉IH
(8.50)
= 〈uµ, uν〉C − ω(uµ, uν) · j = 〈uµ, uν〉C︸ ︷︷ ︸

=δµν

− 〈 uµ︸︷︷︸
∈W

, τ(uν)︸ ︷︷ ︸
∈W⊥

〉C · j = δµν ,

whence u ∈ M̃ follows. Conversely, let u ∈ M̃ be given and put Y := θ(u) . Then we have

for every µ, ν ∈ {1, . . . , r} : 〈uµ, uν〉IH = δµν ∈ IR and therefore by Equation (8.50): 0 =

ω(uµ, uν) = 〈uµ, τ(uν)〉C . It follows that Y ⊥ τ(Y ) and therefore Y ∈M , hence u ∈ θ−1(M)

holds.

For (b). We remark that M is a regular submanifold of Gr(W ) , because it is an orbit of the

action of a compact Lie group. However, a more explicit proof is required to show that M is a

complex submanifold of Gr(W ) .

For this purpose, we first note that we have M 6= ∅ because of (a). We now consider the Stiefel

manifold Ŝtr(W ) ⊂ L(Cr,W ) of complex r-frames in W ; this is a complex manifold, and the

canonical projection θ̂ : Ŝtr(W ) → Gr(W ), u 7→ u(Cr) is a holomorphic submersion. Moreover,

we consider the holomorphic map

g : Ŝtr(W ) → Cr(r−1)/2, u 7→
(
ω(uµ, uν)

)
1≤µ<ν≤r .

Note that because of Equation (8.47), g−1({0}) = θ̂−1(M) holds.

Immediately, we will show that g is a submersion; it then follows that g−1({0}) = θ̂−1(M) is

a regular, complex submanifold of Ŝtr(W ) (see [Nar68], Corollary 2.5.5, p. 81). Thus we may

then conclude that M is a complex submanifold of Gr(W ) . (Local trivializations of θ̂ give rise

to local parameterizations of M .) Moreover, we see that the complex dimension of θ̂−1(M) is

equal to r ·2r− 1
2 r(r−1) = 1

2 r(3r+1) . Because GL(Cr) acts simply transitively on the fibres of

θ̂ , the fibre dimension of θ̂ is r2 , and thus the dimension of M is 1
2 r(3r+1)− r2 = 1

2 r(r+1) .

For the proof of the submersivity of g ,26 let u ∈ Ŝtr(W ) be given. Then we have
−−−−−−→
TuŜtr(W ) =

L(Cr,W ) and

∀ξ ∈ TuŜtr(W ) :
−−−−→
Tug(ξ) =

(
ω((

−→
ξ )µ, uν) + ω(uµ, (

−→
ξ )ν)

)
1≤µ<ν≤r . (8.54)

26The proof of the submersivity of g is to a large extent analogous to the proof of Theorem 7.11(b). It should,

however, be noted that in Theorem 7.11 the function g is defined with respect to a symmetric bilinear form,

whereas here it is defined with respect to a skew-symmetric bilinear form. This difference necessitates some

changes in the details of the proof.
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To show that Tug : TuŜtr(W ) → TuC
r(r−1)/2 is surjective, it is therefore sufficient to prove that

the linear forms (λµν)µ<ν with

λµν : L(Cr,W ) → C, a 7→ ω(aµ, uν) + ω(uµ, aν) (µ < ν)

are linear independent. For this we first note that because of the non-degeneracy of ω we have

∀z ∈ Cr ∃w ∈W :
(
ω(w, uν)

)
1≤ν≤r = z . (8.55)

Now let (αµν)µ<ν ∈ Cr(r−1)/2 be given so that
∑

µ<ν αµν λµν = 0 holds. Further, let µ0 < ν0

be given. By (8.55) there exists a ∈ L(Cr,W ) so that

∀µ, ν ∈ {1, . . . , r} : ω(aµ, uν) = δµ,µ0 · δν,ν0

holds. Then we have for any µ < ν : λµν(a) = δµ,µ0 · δν,ν0 and therefore

0 =
∑

µ<ν

αµν λµν(a) = αµ0 ν0 .

This shows the linear independence of (λµν) .

For (c). We have K ⊂ Sp(W ) ⊂ U(W ) , and by definition for any B ∈ K : B(Y ) = Y and thus

B|Y ∈ U(Y ) . This shows that Ψ indeed maps into U(Y ) ; it is clear that Ψ is a homomorphism

of Lie groups.

For the injectivity of Ψ : Let B ∈ K be given with Ψ(B) = idY . Because of B ∈ Sp(W ) , we

have B ◦ τ = τ ◦ B by Proposition 8.16 and therefore

B|τ(Y ) = (τ |Y ) ◦ (B|Y )︸ ︷︷ ︸
=idY

◦(τ |Y )−1 = idτ(Y ) .

Because of W = Y 	 τ(Y ) , we conclude B = idW .

For the surjectivity of Ψ : Let D ∈ U(Y ) be given and define a C-linear map B : W →W by

B|Y = D and B|τ(Y ) = (τ |Y ) ◦D ◦ (τ |Y )−1 (8.56)

Note that B leaves Y and τ(Y ) invariant, and that besides B|Y ∈ U(Y ) we also have

B|τ(Y ) ∈ U(τ(Y )) because of Equation (8.48). Therefrom B ∈ U(W ) follows. Moreover,

(8.56) implies B ◦ τ = τ ◦ B , and thus we have B ∈ Sp(W ) by Proposition 8.16. Clearly, we

have B(Y ) = Y , hence B ∈ K , and Ψ(B) = B|Y = D .

For (d). We regard Gr(W ) as a Hermitian symmetric SU(W )-space; if we fix Y ∈ M and

denote by S : W → W the linear map characterized by S|Y = idY and S|τ(Y ) = −idτ(Y ) ,

then the symmetric structure of Gr(W ) is with respect to the “origin point” Y described by

the involutive Lie group automorphism

σ : SU(W ) → SU(W ), B 7→ SBS−1 .
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By (a) and (b), M is a complex submanifold and an orbit of the Lie group Sp(W ) ⊂ SU(W )

acting on Gr(W ) . To prove that M is a Hermitian symmetric subspace of Gr(W ) , it therefore

suffices to show that Sp(W ) is invariant under σ (see [KN69], Theorem XI.4.1, p. 234).

To show this, we first note that S ∈ U(W ) and τ ◦ S = −S ◦ τ holds. Now, let B ∈ Sp(W ) be

given. Then we have B ∈ U(W ) by Proposition 8.16 and therefore σ(B) = SBS−1 ∈ U(W ) ;

from the equations τ ◦ B = B ◦ τ (again see Proposition 8.16) and τ ◦ S = −S ◦ τ we get

τ ◦ σ(B) = σ(B) ◦ τ and therefore σ(B) ∈ Sp(W ) by Proposition 8.16. Thus we have shown

σ(Sp(W )) ⊂ Sp(W ) . Because σ is involutive, σ(Sp(W )) = Sp(W ) follows.

It follows from (b) and (c) that M is isomorphic to the quotient space Sp(r)/U(r) .

Finally, we note that M is connected along with Sp(W ) and that as a symmetric subspace, it

is a complete, totally geodesic submanifold of Gr(W ) , see [KN69], Theorem XI.4.1, p. 234. �

We now specialize to the situation of Theorem 8.7, where W is a 4-dimensional unitary space

(i.e. r = 2 holds), and W is equipped with a complex orientation. Again, we denote the Hodge

operator corresponding to this situation by ∗ :
∧2W → ∧2W and regard

∧2W as a CQ-space

via the CQ-structure A := S1 · ∗ .

8.19 Theorem. (a) Let ω̂ :
∧2W → C be the linear form uniquely characterized by

∀w1, w2 ∈W : ω̂(w1 ∧ w2) = ω(w1, w2) .

Then U := ker ω̂ is a 5-dimensional CQ-subspace of (
∧2W,A) ; we denote its induced

CQ-structure by A′ .

The vector ω̂] ∈
∧2W characterized by

∀ξ ∈ ∧2W : ω̂(ξ) = 〈ξ, ω̂]〉C
is given by

ω̂] = −(u1 ∧ τ(u1) + u2 ∧ τ(u2) ) , (8.57)

where (u1, u2) is any symplectic basis of W . Note that U = (ω̂])⊥ holds.

(b) f4(M) is the 3-dimensional, totally geodesic subquadric Q′ := Q(A′) = Q(∗) ∩ [U ] of the

Plücker quadric Q(∗) and

f3 := f4|M : M → Q′

is a holomorphic isometry.

(c) For every B ∈ Sp(W ) , we have

B(2)|U ∈ Auts(A
′)0 and B(2)(ω̂]) = ω̂] , (8.58)

and

F3 : Sp(W ) → Auts(A
′)0, B 7→ B(2)|U

is a two-fold covering map of Lie groups with kernel {±idW} . Herein we recognize the

well-known isomorphy of Lie groups

Sp(2) ∼= Spin(5) .
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(d) (f3, F3) is an almost-isomorphism of Hermitian symmetric spaces from the Sp(W )-space

M onto the Auts(A
′)0-space Q′ . In particular, via F3 Q′ can be regarded as a Hermitian

symmetric Sp(W )-space, and we have shown the following almost-isomorphy of Hermitian

symmetric spaces:

Q3 ∼= Sp(2)/U(2) .

Proof. For (a). The existence and uniqueness of ω̂ follows from the universal property char-

acterizing the exterior product
∧2W , and the existence and uniqueness of ω̂] is then clear.

Because ω is non-degenerate, we have ω̂ 6= 0 , and therefore U is a 5-dimensional, complex

subspace of
∧2W .

Next, we verify Equation (8.57). For this purpose, we let a symplectic basis (u1, u2) of W be

given, then (u1, u2, u3, u4) with u3 := τ(u1) and u4 := τ(u2) is a unitary basis of W , and

(uµ ∧ uν)µ<ν is a unitary basis of
∧2W . For the proof of Equation (8.57), it suffices to show

the equality

ω̂(ξ) = −〈 ξ , u1 ∧ u3 + u2 ∧ u4 〉C
for the elements ξ of the latter basis, and this means because of Equation (8.47)

∀µ < ν : 〈uµ, τ(uν)〉C = −〈uµ ∧ uν , u1 ∧ u3 + u2 ∧ u4 〉C ;

the latter equation is easily verified by direct calculation.

It only remains to show that U is a CQ-subspace of
∧2W . For this purpose, we let ψ be the

complex orientation on W so that the above unitary basis (u1, u2, τ(u1), τ(u2)) is positively

oriented (Remark 8.17 shows that ψ does not depend on the choice of (u1, u2) ) and ∗ψ be

the Hodge operator on
∧2W corresponding to the orientation ψ ; then we have ∗ψ ∈ A .

Example B.3 shows that

∗ψ(ω̂])
(8.57)
= − ∗ψ (u1 ∧ τ(u1) + u2 ∧ τ(u2)) = u2 ∧ τ(u2) + u1 ∧ τ(u1)

(8.57)
= −ω̂]

holds; because ∗ψ transforms unitary bases of
∧2W into unitary bases of

∧2W , it follows that

U = (ω̂])⊥ is ∗ψ-invariant and hence a CQ-subspace of
∧2W .

For (b). We consider the canonical projections θ̂ : Ŝt2(W ) → G2(W ), u 7→ u(C2) and π̂ :∧2W \ {0} → IP(
∧2W ), v 7→ [v] , and the holomorphic map f̂4 : Ŝt2(W ) → Q̂(∗), u 7→ u1 ∧ u2 ;

then f4 ◦ θ̂ = π̂ ◦ f̂4 holds. As we saw in the proof of Proposition 8.18(b), we have

θ̂−1(M) = g−1({0}) (8.59)

with the holomorphic submersion g : Ŝt2(W ) → C, u 7→ ω(u1, u2) . We have g = ω̂ ◦ f̂4 , and

therefore Equation (8.59) shows that f̂4 maps θ̂−1(M) into ker ω̂ = U . Thus f4 maps M into

Q(∗)∩ [U ] = Q′ . Because M is compact, Q′ is connected, and we have dimC M = 3 = dimCQ
′

(see Proposition 8.18(b)), it follows that in fact f4(M) = Q′ holds.

For (c). Let B ∈ Sp(W ) be given. Then B leaves ω invariant by Proposition 8.16, and

therefore we have ω̂ ◦ B(2) = ω̂ . Because we also have B(2) ∈ U(
∧2W ) , it follows that
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B(2)(ω̂]) = ω̂] holds. It also follows that B(2) leaves ker ω̂ = U invariant. Because we have

B(2) ∈ Auts(A) by Theorem 8.7(b), we conclude that F3 : Sp(W ) → Auts(A
′), B 7→ B(2)|U

is a homomorphism of Lie groups, which because of the connectedness of Sp(W ) in fact maps

into Auts(A
′)0 . Thus we have shown (8.58).

For B ∈ Sp(W ) , B(2)|U = idU already implies B(2) = idV2 W because of (8.58), and therefore

we have kerF3 = kerF4 ∩ Sp(W ) = {±idW} by Theorem 8.7(b). Thus, F3 is a two-fold

covering map of Lie groups over its image, which is indeed all of Auts(A
′)0 because we have

dimSp(W ) = 10 = dimAuts(A
′)0 .

For (d). It is now clear that (f3, F3) is an almost-isomorphism of homogeneous spaces from the

Sp(W )-space M onto the Auts(A
′)0-space Q′ . Because the Lie groups Sp(W ) and Auts(A

′)0
are of compact type, Proposition A.5 shows that (f3, F3) is an almost-isomorphisms of affine

symmetric spaces; because f3 is also a holomorphic isometry, (f3, F3) is in fact an almost-

isomorphism of Hermitian symmetric spaces. �

8.5 Q6 is isomorphic to SO(8)/U(4)

The two series of Hermitian symmetric spaces Qm and SO(2n)/U(n) intersect for m = 6, n =

4 . In the present section, we construct the corresponding isomorphism Q6 ∼= SO(8)/U(4)

explicitly.

There are several geometric realizations for the Hermitian symmetric space SO(2n)/U(n) :

• The two connected components of the congruence family F(IPn−1, Q2n−2) studied in The-

orem 7.11 are as Hermitian symmetric spaces isomorphic to SO(2n)/U(n) (see Theo-

rem 7.11(c)(i)).

• If V is a 2n-dimensional complex linear space, the submanifold of the complex Grass-

mannian Gn(V ) constituted by those U ∈ Gn(V ) which are isotropic with respect to

some non-degenerate, symmetric bilinear form β on V has two connected components,

both of which are isomorphic to SO(2n)/U(n) .

• The manifold of orthogonal complex structures on the Euclidean space IR2n has two

connected components, both of which are isomorphic to SO(2n)/U(n) .

We will base our construction of the isomorphism Q6 ∼= SO(8)/U(4) on the realization

F(IP3, Q6) of SO(8)/U(4) . In the construction, we will extensively use the theory of CQ-spaces,

as we did throughout the present dissertation.27 Also, we will use the theory of Clifford alge-

27It should be noted, however, that both SO(8)/U(4) and Q6 can be described without use of CQ-structures:

the former space as a connected component of the manifold of orthogonal complex structures on IR8 , and the

latter as a 6-dimensional algebraic complex quadric (which can then be regarded as a symmetric complex quadric

via a suitable Hermitian inner product on the underlying complex linear space, see Remark 1.12(b)). Therefore,

it should be possible in principle to describe the isomorphism without reference to the theory of CQ-spaces.
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bras, spin groups and its representations as described in Appendix B. The principle of triality

(Section B.6) will play an important role.

The strategy is as follows: Let (V,A) be an 8-dimensional CQ-space and fix A ∈ A . Then

A gives rise to a symmetric bilinear form β on V , thereby to the Clifford algebra C(V, β)

and to the spaces S+ and S− of positive resp. negative half-spinors, which are in the present

situation again 8-dimensional. It will turn out that S± can be equipped with a CQ-structure

A± in a canonical way. A± defines the 6-dimensional complex quadric Q± := Q(A±) . We will

construct isomorphisms of Hermitian symmetric spaces from Q± to the connected components

of the congruence family F(IP3, Q) .

For the construction of these isomorphisms, we note that for any spinor s 6= 0 , Z(s) := { v ∈
V | ρ(v)s = 0 } (where ρ : C(V, β) → End(S) denotes the spin representation of the Clifford

algebra C(V, β) ) is an isotropic subspace of V . As it is described in Subsection 8.5.2, Z(s) is

of the maximal dimension 4 if and only if s ∈ Q̂(A+)∪̇Q̂(A−) holds. In this way, with every

element of Q̂(A±) there is associated a 4-dimensional isotropic subspace of V and therefore

an element of F(IP3, Q) . It turns out in Subsection 8.5.3 that this association descends to

isomorphisms of Hermitian symmetric spaces h+ and h− from Q+ resp. Q− to one resp. the

other connected component of F(IP3, Q) .

As preparation for this construction, we investigate in Subsection 8.5.1 the relationship be-

tween the vector representation χ resp. the spin representations ρ± of Spin(V, β) and the

CQ-structures on the spaces V and S± . In particular, we construct a subgroup G of

Spin(V, β) (isomorphic to the real spin group Spin(8) ) so that χ|G : G → Auts(A)0 and

ρ±|G : G→ Auts(A±)0 are two-fold covering maps of Lie groups. Via these covering maps, the

quadrics Q and Q± can be regarded as Hermitian symmetric G-spaces.

The fundamental facts on Clifford algebras, the spin group and spin representations which are

needed here are gathered in Appendix B.

8.5.1 The vector and spin representations of Spin(8)

Let (V,A) be an 8-dimensional CQ-space. We fix A ∈ A and consider the non-degenerate,

symmetric bilinear form

β : V × V → C , (v1, v2) 7→ 〈v1, Av2〉C

induced by A , the quadratic form q : V → C, v 7→ 1
2 β(v, v) and the complex Clifford algebra

C(V, β) (see Section B.3). We also have the vector representation χ : Γ(V, β) → O(V, β) of the

Clifford group Γ(V, β) .

We now exhibit a connection between this complex situation and the situation of a real Clifford

algebra. The space V′ := JV (A) = V (−A) is a real-8-dimensional, totally real subspace of V ,

which we regard in the sequel as an euclidean space, and

∀v ∈ V, x ∈ V′ : β(v, x) = −〈v, x〉C (8.60)
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holds. It follows that β ′ := β|(V′×V′) is a symmetric, negative definite, real bilinear form on V′ ,
and we also consider the real Clifford algebra C(V′, β′) ; we denote by χ′ : Γ(V′, β′) → SO(V′)
the vector representation of Γ(V′, β′) . It should be noted that with q′ := q|V′ , (q′)−1({−1})
is the sphere of radius

√
2 in V′ .

The IR-linear map ι : V′ ↪→ C(V, β) is a Clifford map for the Clifford algebra C(V′, β′) , and

therefore there exists one and only one algebra homomorphism ψ : C(V′, β′) → C(V, β) so that

ψ(x) = x holds for every x ∈ V′ .

8.20 Proposition. (a) ψ is injective.

(b) Put

G := {x1 · · · x2k | k ≤ 4, x1, . . . , x2k ∈ (q′)−1({−1}) } ⊂ Spin(V, β) ,

where the multiplication is carried out in C(V, β) . G is a compact, simply connected Lie

subgroup of Spin(V, β) , and Ψ := (ψ|Spin(V′, β′)) : Spin(V′, β′) → G is an isomorphism

of Lie groups. Moreover, we have

∀g′ ∈ Spin(V′, β′) : χ′(g′) = χ(Ψ(g′))|V′ . (8.61)

(c) We have

G = { g ∈ Spin(V, β) |χ(g) ∈ Auts(A)0 }

and χ|G : G→ Auts(A)0 is a two-fold covering map of Lie groups with ker(χ|G) = {±1} .

Proof. For (a). Let (x1, . . . , x8) be an IR-basis of V′ . Then the same list of vectors is a C-

basis of V , and ψ maps the induced IR-basis (xS)S⊂{1,...,8} of C(V′, β′) (see Theorem B.7(b))

onto the C-basis (xS)S⊂{1,...,8} of C(V, β) , which is in particular linear independent over IR .

Therefore ψ is injective.

For (b). Proposition B.15(c)(ii) shows that ψ maps Spin(V′, β′) onto G . Clearly Ψ is a

homomorphism of abstract groups. As restriction of an injective linear map to a compact

submanifold, Ψ (regarded as a map into Spin(V, β) ) also is an embedding, and its image

G = Ψ(Spin(V′, β′)) is a compact submanifold of Spin(V, β) . It follows that G is a Lie

subgroup of Spin(V, β) (see [Var74], Theorem 2.12.6, p. 99) and that Ψ is an isomorphism of

Lie groups onto G . Consequently G is simply connected along with Spin(V′, β′) .

For Equation (8.61): Let us denote the canonical involutions of C(V, β) and C(V ′, β′) (see

Proposition B.10(a)) by α and α′ , respectively. α leaves ψ(C(V′, β′)) invariant; this fact

together with the unique characterization of α′ in Proposition B.10(a) shows that ψ◦α′ = α◦ψ
holds. We thus have for any g′ ∈ Spin(V′, β′) and x ∈ V′

χ′(g′)x = ψ(χ′(g′)x) = ψ(α′(g′) · x · (g′)−1)

= ψ(α′(g′)) · ψ(x) · ψ(g′)−1 = α(ψ(g′)) · x · ψ(g′)−1 = χ(Ψ(g′))x .
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For (c). We put G̃ := { g ∈ Spin(V, β) |χ(g) ∈ Auts(A)0 } .

First, we show G ⊂ G̃ . For this, let g ∈ G be given. Then χ(g) is a C-linear transformation

of V , and with g′ := Ψ−1(g) ∈ Spin(V′, β′) we have χ(g)|V′ = χ′(g′) ∈ SO(V′) by (b)

and Proposition B.15(e), whence χ(g) ∈ Auts(A)0 follows by Proposition 2.17(a) because of

V′ = V (−A) . Thus we have g ∈ G̃ .

We now consider the Lie group isomorphism Ξ : SO(V′) → Auts(A)0, L 7→ LC (see Proposi-

tion 2.17(a)) and the following commutative diagram:

Spin(V′, β′) Ψ //

χ′

��

G
�

�

/

χ|G
��

Spin(V, β)

χ

��
SO(V′)

Ξ
// Auts(A)0

�

�

/ SO(V, β) .

From the commutativity of the left-hand half of the diagram, we see that χ|G : G→ Auts(A)0
is a two-fold covering of Lie groups with ker(χ|G) = {±1} , see Proposition B.15(d),(e).

Finally, we prove G̃ ⊂ G . For this, let g̃ ∈ G̃ be given. Then we have B := χ(g̃) ∈ Auts(A)0 .

Because both χ|G : G → Auts(A)0 and χ : Spin(V, β) → SO(V, β) are two-fold covering

maps of Lie groups, the commutativity of the right-hand side of the diagram shows that both

pre-images of B under χ are contained in G . In particular, we have g̃ ∈ G . �

Our next aim is to obtain an analogous result as that of Proposition 8.20(c) for the half-spin

representations ρ± belonging to C(V, β) .

To obtain the explicit description of the spin representation given in Section B.5, we fix a

complex-4-dimensional, A-isotropic subspace W of V (see Corollary 2.22). Then W ′ := A(W )

is another complex-4-dimensional, A-isotropic subspace of V , W and W ′ are also β-isotropic,

and we have V = W 	 W ′ . Moreover, we fix a complex orientation on W and denote by

ω ∈
∧4W the positive unit 4-vector of W corresponding to this orientation (see Section B.2).

Note that the Hermitian inner product of W induces a Hermitian inner product on
∧
W in the

way described in Section B.2. We denote this product also by 〈·, ·〉C

We apply the construction of Section B.5 in this situation. Thereby we obtain the spinor

space S =
∧
W , the spaces S+ =

∧evenW and S− =
∧oddW of even resp. of odd half-

spinors, the non-degenerate bilinear form βS : S × S → C of Proposition B.30 which is

here symmetric (Proposition B.30(b)(v)), their restrictions β± := βS |(S± × S±) , the spin

representation ρ : C(V, β) → End(S) (Theorem B.26), and the half-spin representations

ρ± : Spin(V, β) → SO(S±, β±) .

8.21 Proposition. The anti-linear map AS : S → S characterized by

∀s1, s2 ∈ S : 〈s1, AS(s2)〉C = βS(s1, s2) (8.62)

is a conjugation on S . In the sequel, we regard S as a CQ-space via the CQ-structure AS :=

S1 · AS .
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Proof. It is obvious that AS is anti-linear, and because βS is symmetric, AS is self-adjoint with

respect to the real inner product 〈·, ·〉IR := Re(〈·, ·〉C) on S =
∧
W . It thus only remains to

show that AS is also orthogonal with respect to 〈·, ·〉IR (see Definition 2.1), and for this purpose,

we derive an explicit description of AS involving the Hodge operator (see Appendix B.2).

Let k ∈ {0, . . . , 4} and s ∈ ∧kW be given. For s̃ ∈ ∧`W with ` ∈ {0, . . . , 4} , ` 6= 4 − k , we

have by the definition of βS (Proposition B.30(a))

〈s̃, AS(s)〉C
(8.62)
= βS(s̃, s) = ϕ(κ(s̃) ∧ s) = 0 ,

where κ is the main anti-automorphism of C(V, β) and ϕ is as in Proposition B.30. Therefore,

AS(s) ∈ ∧4−kW holds. Now let us denote by ∗ the Hodge operator on S =
∧
W with respect

to the chosen orientation on W . Then we have for any s̃ ∈ ∧4−kW by Proposition B.30(d)

〈s̃, AS(s)〉C
(8.62)
= βS(s̃, s)

= (−1)4(4−k) · (−1)(4−k)(4−k+1)/2 · 〈s̃, AS(s)〉C
= (−1)k(k−1)/2 · 〈s̃, AS(s)〉C .

Thus, we have shown

∀k ∈ {0, . . . , 4} : AS |
∧kW = (−1)k(k−1)/2 · (∗|∧kW ) .

From this representation of AS and Proposition B.2(e) we see that AS is orthogonal with

respect to 〈·, ·〉IR . �

Because the spaces S+ and S− are the βS-ortho-complement of each other (Proposi-

tion B.30(c)), they are AS-invariant, and therefore CQ-subspaces of S . A± := AS |S± : S± →
S± is a conjugation on S± , and A± := S1 ·A± is the CQ-structure on S± induced by AS .

To gain insight into the behaviour of the half-spin representations ρ± , we take advantage of

the fact that they are “intertwined” with the vector representation χ in the way described by

the principle of triality, see Section B.6. We denote by T = V ⊕ S = V ⊕ S+ ⊕ S− the triality

algebra which was described there. But now we also equip T with the complex inner product

characterized by the following properties: (1) The restriction of this inner product to V×V and

to S × S equals the inner product on V resp. on S we considered before. (2) The subspaces

V and S of T are orthogonal to each other. We denote also this inner product by 〈·, ·〉C .

Moreover, we consider the anti-linear map AT : T → T characterized by

AT|V = A and AT|S = AS .

Then AT is a conjugation on T , therefore AT := S1 ·AT is a CQ-structure on T , and we regard

T as a CQ-space in this way in the sequel. It should be noted that (V,A) , (S,AS) , (S+,A+)

and (S−,A−) are CQ-subspaces of (T,AT) , and that

∀X,Y ∈ T : 〈X,ATY 〉C = βT(X,Y )
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holds, where βT is the non-degenerate, symmetric bilinear form on T from Section B.6 induced

by β and βS .

We now fix w1 ∈ S(W ) and put w′
1 := Aw1 ∈ S(W ′) , note that β(w1, w

′
1) = 1 holds. Then

we consider the triality automorphism T : T → T corresponding to this choice of (w1, w
′
1)

as described in Theorem B.34 and by ϑ : Spin(V, β) → Spin(V, β) the corresponding triality

automorphism of Spin(V, β) , see Theorem B.35. We summarize the fundamental properties of

T and ϑ :

T 3 = idT , ϑ3 = idSpin(V,β) , (8.63)

T (V) = S+ , T (S+) = S− and T (S−) = V , (8.64)

∀X,Y ∈ T : βT(T (X), T (Y )) = βT(X,Y ) , (8.65)

∀g ∈ Spin(V, β) : µ(ϑ(g)) ◦ T = T ◦ µ(g) . (8.66)

In the last equation, µ : Spin(V, β) → SO(T, βT) is the representation of Spin(V, β) on T

induced by χ and ρ as described in Section B.6.

As was emphasized at the end of Section B.6, it is in some regards more natural to consider

restrictions of T :

TV+ := T |V : V → S+ , T+− := T |S+ : S+ → S− and T−V : T |S− : S− → V .

From Equation (8.66) and the definition of µ , we see that the following equations hold for any

g ∈ Spin(V, β) :

ρ+(ϑ(g)) ◦ TV+ = TV+ ◦ χ(g) , (8.67)

ρ−(ϑ(g)) ◦ T+− = T+− ◦ ρ+(g) , (8.68)

and χ(ϑ(g)) ◦ T−V = T−V ◦ ρ−(g) . (8.69)

The following proposition clarifies the relationship between T and the CQ-space structure of

T :

8.22 Proposition. (a) T ∈ Auts(AT)0 .

(b) TV+ , T+− and T−V are CQ-isomorphisms between the respective CQ-subspaces of T .

Proof. For (a). We extend w1 into a positively oriented unitary basis (w1, . . . , w4) of W , then

(w′
1, . . . , w

′
4) with w′

k := Awk is a unitary basis of W ′ so that β(wk, w
′
`) = δk` holds. The 24

elements of T

w1, w2, w3, w4, w′
1, w

′
2, w

′
3, w

′
4 ∈ V ,

1, w1 ∧ w2, w1 ∧ w3, w1 ∧w4, w1 ∧ w2 ∧ w3 ∧ w4, −w3 ∧ w4, w2 ∧ w4, −w2 ∧ w3 ∈ S+ ,

w2 ∧ w3 ∧ w4, −w2, −w3, −w4, w1, w1 ∧ w3 ∧ w4, −w1 ∧ w2 ∧w4, w1 ∧ w2 ∧ w3 ∈ S−

constitute a unitary basis of T , which is mapped by T onto the same basis in a different

ordering, as Theorem B.34 shows. Therefore T is a unitary map.
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Also we have T ∈ O(T, βT) by Equation (8.65), and therefore detC(T ) ∈ {±1} . Moreover, we

have

(det C(T ))3 = det C(T 3)
(8.63)
= det C(idT) = 1

and therefore detC(T ) = 1 , hence T ∈ SO(T, βT) .

Thus we have shown T ∈ U(T) ∩ SO(T, βT) = Auts(AT)0 , see Proposition 2.18(b).

For (b). This follows from (a) and the fact that V , S+ and S− are CQ-subspaces of T which

are permuted cyclically by T . �

8.23 Proposition. (a) For any g ∈ G , we have ρ±(g) ∈ Auts(A±)0 , and the maps

ρ+|G : G→ Auts(A+)0 and ρ−|G : G→ Auts(A−)0

are two-fold covering maps of Lie groups.

(b) ϑ(G) = G . Thus ϑ|G : G→ G is a Lie group automorphism of order 3 .

Proof. Let g ∈ G be given. Below, we show ρ(g) ∈ Auts(AS) ; because S± is a CQ-subspace

of S , ρ±(g) ∈ Auts(A±) follows; because G is connected and ρ±|G : G → Auts(A±) is

continuous, we then see that in fact, ρ±(g) ∈ Auts(A±)0 holds.

For the proof of ρ(g) ∈ Auts(AS) : We have Auts(AS) = U(S)∩O(S, βS) by Proposition 2.18(a)

and ρ(g) ∈ O(S, βS) by Proposition B.30(b)(iii). Thus, it remains to show ρ(g) ∈ U(S) . For

this we note that by the definition of G , there exist k ≤ 4 and x1, . . . , x2k ∈ (q′)−1({−1}) such

that g = x1 · · · x2k and hence ρ(g) = ρ(x1) ◦ . . . ◦ ρ(x2k) holds. It is therefore sufficient to show

ρ(x) ∈ U(S) for any x ∈ (q′)−1({−1}) .

For this purpose, let x ∈ (q′)−1({−1}) ⊂ V′ be given. By Proposition 2.20(g) there exists

a1 ∈ W so that x = a1 − Aa1 holds, and q′(x) = −1 implies ‖a1‖ = 1 . We extend a1 to a

positively oriented, unitary basis (a1, . . . , a4) of W .

By Theorem B.26, we have for any s ∈ S

ρ(x)s = ρ(a1)s− ρ(Aa1)s = a1 ∧ s− νβ(·,Aa1)s = a1 ∧ s− ν〈·,a1〉Cs . (8.70)

Using this equation, we calculate

s ∈ S 1 a1 ∧ a2 a1 ∧ a3 a1 ∧ a4 a2 ∧ a3 a2 ∧ a4 a3 ∧ a4 a1 ∧ a2 ∧ a3 ∧ a4

ρ(x)s a1 −a2 −a3 −a4 a1 ∧ a2 ∧ a3 a1 ∧ a2 ∧ a4 a1 ∧ a3 ∧ a4 −a2 ∧ a3 ∧ a4

In the Clifford algebra C(V, β) , we have x = −x−1 and therefore ρ(x) = −ρ(x)−1 . Thus, we

obtain from the previous table also the following values:

s ∈ S a1 a2 a3 a4 a1 ∧ a2 ∧ a3 a1 ∧ a2 ∧ a4 a1 ∧ a3 ∧ a4 a2 ∧ a3 ∧ a4

ρ(x)s −1 a1 ∧ a2 a1 ∧ a3 a1 ∧ a4 −a2 ∧ a3 −a2 ∧ a4 −a3 ∧ a4 a1 ∧ a2 ∧ a3 ∧ a4

These two tables show that ρ(x) transforms the unitary basis (wN )N⊂{1,...,4} of S (see (B.21))

into another unitary basis of S . Therefore, we have ρ(x) ∈ U(S) .
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Next, we show ϑ(G) = G . Let g ∈ G be given. Then Equation (8.69) shows that we have

χ(ϑ(g)) = T−V ◦ ρ−(g) ◦ T−1
−V

.

As we saw above, we have ρ−(g) ∈ Auts(A−)0 ; because T−V : S− → V is a CQ-isomorphism by

Proposition 8.22(b), it follows that χ(ϑ(g)) ∈ Auts(A)0 holds. This fact implies ϑ(g) ∈ G by

Proposition 8.20(c). Thus we have shown ϑ(G) ⊂ G . We then also have G = ϑ3(G) ⊂ ϑ2(G) ⊂
ϑ(G) , see Equation (8.63).

It remains to show that ρ±|G : G → Auts(A±)0 is a two-fold covering map of Lie groups. For

this, we note that ϑ|G : G → G and T̃V+ : Auts(A)0 → Auts(A+)0, B 7→ TV+ ◦ B ◦ T−1
V+ are

isomorphisms of Lie groups, that the diagram

G
ϑ|G

//

χ|G
��

G

ρ+|G
��

Auts(A)0 eTV+

// Auts(A+)0

(8.71)

commutes by Equation (8.67), and that χ|G : G→ Auts(A)0 is a two-fold covering of Lie groups

by Proposition 8.20(c).

A repetition of this argument with the isomorphism of Lie groups T̃+− : Auts(A+)0 →
Auts(A−)0, B 7→ T+− ◦ B ◦ T−1

+− then shows that ρ−|G is a two-fold covering of Lie groups,

too. �

8.24 Remark. It also follows from the commutativity of Diagram (8.71) that ker(ρ+|G) =

{1, ϑ(−1)} and likewise ker(ρ−|G) = {1, ϑ2(−1)} holds. The elements ϑ(−1), ϑ2(−1) ∈ G

are described explicitly in Proposition B.36(e).

8.5.2 Pure spinors

To establish the isomorphy between the complex quadrics Q(A±) and the connected compo-

nents of F(IP3, Q) which we advertised above, we need a correspondence between the set of

4-dimensional isotropic subspaces of V and a certain subset of S , the set of pure spinors. We

describe the results concerning pure spinors following the exposition of Lawson/Michelsohn,

see [LM89], §IV.9, p. 335ff. Theorem 8.31, which states that the set of pure spinors is the union

of two quadratic cones in our situation, can be found in Chevalley, [Che54], IV.1.1, p. 113.

At first, we consider the general situation of Section B.5, where V is a complex linear space of

even dimension n = 2r equipped with some symmetric, non-degenerate bilinear form β . Then

we have the Clifford algebra C := C(V, β) and the vector representation χ : Γ(V, β) → O(V, β)

of the Clifford group. As in Section B.5, we fix a decomposition V = W ⊕ W ′ of V into

isotropic, r-dimensional subspaces and a “unit volume” ω ∈ ∧rW \ {0} . Then we consider

the space S =
∧
W of spinors, the spin representation ρ : C(V, β) → End(S) , the spaces
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S+ =
∧evenW and S− =

∧oddW of even resp. odd half-spinors, and their representations

ρ± : Spin(V, β) → GL(S±) .

Moreover, we denote by I ⊂ Gr(V ) the set of complex r-dimensional β-isotropic subspaces

of V . Γ(V, β) acts on I via χ̌ : Γ(V, β) × I → I, (g, U) 7→ χ(g)U . We regard I as a

Γ(V, β)-space in this way.

8.25 Proposition. χ̌ is transitive.

Proof. By Lemma B.21 there exists a complex inner product 〈·, ·〉 on V and a conjugation A on (V, 〈·, ·〉) so

that the elements of I are precisely the complex-r-dimensional, A-isotropic subspaces of V , and

β|(V (A) × V (A)) = 〈·, ·〉|(V (A) × V (A)) (8.72)

holds. Therefore, Proposition 2.20(e),(f) shows that for any given U1, U2 ∈ I , there exist orthogonal complex

structures τ1, τ2 : V (A) → V (A) such that Uk = {x+ Jτkx |x ∈ V (A) } for k ∈ {1, 2} . Then there exists L ∈

O(V (A)) with τ2 = L ◦ τ1 ◦L
−1 and therefore U2 = LC(U1) ; we have LC ∈ O(V, β) because of Equation (8.72).

Proposition B.12(e) shows that there exists g ∈ Γ(V, β) with χ(g) = LC and therefore U2 = χ̌(g,U1) . �

We now associate with every s ∈ S a linear map

js : V → S, v 7→ ρ(v)s .

For a “generic” choice of s ∈ S , js is injective. However, there exist particular s ∈ S for which

js has a non-trivial kernel, and these spinors will play an important role in the following.

8.26 Proposition. For s ∈ S \ {0} , ker js is an isotropic subspace of V .

Proof. Let v, w ∈ ker js be given. Then we have ρ(v)s = ρ(w)s = 0 and therefore

0 = ρ(v)ρ(w)s+ ρ(w)ρ(v)s = ρ(v · w + w · v)s = ρ(β(v,w) · 1C)s = β(v, w) · s ,

hence β(v, w) = 0 . �

8.27 Definition. s ∈ S \ {0} is called pure if ker js ∈ I holds. We denote the set of pure spinors

by P(S) . For U ∈ I , we call any s ∈ P(S) with ker js = U a representative spinor of U .

8.28 Example. We have ker j1S
= W ′ and ker jω = W , consequently 1S , ω ∈ P(S) holds.

8.29 Proposition. The ρ-action of Γ(V, β) on S leaves P(S) invariant and the action

ρ̌ : Γ(V, β) × P(S) → P(S), (g, s) 7→ ρ(g)s

is transitive; we regard P(S) as a homogeneous Γ(V, β)-space in this way. The map Z : P(S) →
I, s 7→ ker js is equivariant with respect to the actions of Γ(V, β) on P(S) and on I , and we

have for s, s′ ∈ P(S)

C× · s ⊂ P(S) and
(
Z(s) = Z(s′) ⇐⇒ ∃λ ∈ C× : s = λ s′

)
. (8.73)
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Proof. We first show

∀g ∈ Γ(V, β), s ∈ P(S) : ker jρ(g)s = χ(g)(ker js) . (8.74)

Let g ∈ Γ(V, β) and s ∈ P(S) be given, then we have for any v ∈ ker js

jρ(g)s(χ(g)v) = ρ(χ(g)v)ρ(g) s = ρ(α(g)vg−1g) s = ρ(α(g)) ρ(v) s = ρ(α(g)) js(v) = 0 ,

and therefore

χ(g)(ker js) ⊂ ker jρ(g)s (8.75)

holds. We have

r = dim(ker js) = dim(χ(g)(ker js) )
(8.75)

≤ dim(ker jρ(g)s)
(∗)
≤ r ,

where the inequality marked (∗) follows from the fact that ker jρ(g)s is isotropic, see Proposition 8.26. This chain

of inequalities implies dim(χ(g)(ker js) ) = dim(ker jρ(g)s) , and therefore in fact equality holds in (8.75). This

completes the proof of Equation (8.74).

Equation (8.74) shows that P(S) is invariant under the ρ-action of Γ(V, β) on S and that the map Z is

equivariant with respect to ρ̌ and χ̌ .

We next show (8.73). Let s ∈ P(S) and λ ∈ C× be given. Then we have jλs = λ · js and therefore λ s ∈ P(S)

and Z(λ s) = ker jλs = ker js = Z(s) . Conversely, we suppose that s, s′ ∈ P(S) are given with Z(s) = Z(s′) .

Because I is a homogeneous Γ(V, β)-space (see Proposition 8.25) and Z is equivariant (by Equation (8.74)), we

may suppose without loss of generality that Z(s) = Z(s′) = W ′ and s′ = 1S holds (see Example 8.28). Because

of ker js = W ′ we have

∀w′ ∈ W ′ : ρ(w′)s = 0 . (8.76)

Let us fix a basis (w1, . . . , wr) of W and consider the basis (w′
1, . . . , w

′
r) of W ′ so that β(wk, w

′
`) = δk` holds

(see Proposition B.23). We use the notation wN from (B.21) with respect to the basis (w1, . . . , wr) and denote

by I the power set of {1, . . . , r} . Then (wN )N∈I is a basis of S , therefore there exist numbers cN ∈ C with

s =
P

N∈I cN · wN . We will now show by induction on k that

∀k ∈ {0, . . . , r − 1}, N ∈ I :
`

#N = r − k =⇒ cN = 0
´

(8.77)

holds; it follows that s = c∅ · w∅ = c∅ · 1S holds. Because we have s 6= 0 , we then conclude s ∈ C× · 1 .

For the proof of (8.77): First, suppose k = 0 . The only N ∈ I with #N = r − 0 is N = {1, . . . , r} and then

we have cN = ρ(w′
n) · · · ρ(w′

1)s = 0 by Equation (8.76).

Now, let k ≤ r − 1 be given and suppose that (8.77) holds for all k′ < k . Then let N ∈ I be given with

#N = r−k , say N = {`1, . . . , `r−k} with `1 < . . . < `r−k . With ξ := w′
`r−k

· · ·w′
`1

∈ C the following equations

hold:

cN′ = 0 for every N ′ ∈ I with #N ′ > r − k , (8.78)

ρ(ξ)wN′ = 0 for every N ′ ∈ I with #N ′ ≤ r − k and N ′ 6= N , (8.79)

ρ(ξ)wN = 1S . (8.80)

In fact, Equation (8.78) is simply the induction hypothesis and Equation (8.80) follows from the definition of

ρ . For the proof of Equation (8.79) we handle the cases #N ′ < r − k and #N ′ = r − k separately. First, let

N ′ ∈ I be given with #N ′ < r− k . Then ρ(ξ)wN′ = 0 follows from the definition of ξ and the fact that for any

w′ ∈ W ′ , ρ(w′) is an anti-derivation of degree (−1) . Now let N ′ ∈ I be given with #N ′ = r− k and N ′ 6= N .

Then there exists ` ∈ N \N ′ . We have ρ(w′
`)wN′ = 0 by the definition of ρ and therefore also ρ(ξ)wN = 0 .

From Equations (8.78), (8.79) and (8.80) we see that ρ(ξ)s = cN 1S holds. But on the other hand Equation (8.76)

shows that we have ρ(ξ)s = 0 . From these two equalities, cN = 0 follows, and this completes the proof of (8.77).

Finally, we show that ρ̌ is transitive. Let s, s′ ∈ P(S) be given. Then we have Z(s), Z(s′) ∈ I . By Propo-

sition 8.25 there exists g0 ∈ Γ(V, β) with Z(s′) = χ(g0)Z(s) = Z(ρ(g0)s) , and therefore by (8.73) there exists

λ ∈ C× so that s′ = λρ(g0)s holds. Thus we have s′ = ρ̌(g, s) with g := λg0 ∈ Γ(V, β) . �
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8.30 Corollary. P(S) ⊂ S+ ∪ S− .

Proof. Let s ∈ P(S) be given. Because Γ(V, β) acts transitively on P(S) (Proposition 8.29) and we have

1S ∈ PS (Example 8.28), there exists g ∈ Γ(V, β) so that s = ρ(g)1S holds. By Proposition B.12(f), we have

either g ∈ C+(V, β) and then s = ρ(g)1S ∈ S+ , or else g ∈ C−(V, β) and then s = ρ(g)1S ∈ S− . �

We put P(S+) := P(S) ∩ S+ and P(S−) := P(S) ∩ S− ; on these spaces Γ+(V, β) acts

transitively via ρ , and we have P(S) = P(S+)∪̇P(S−) by Corollary 8.30.

8.31 Theorem. (Chevalley, [Che54], IV.1.1, p. 113.) In the situation of Subsection 8.5.1,

where V is an 8-dimensional CQ-space and the corresponding half-spinor spaces S± are re-

garded as CQ-spaces (S±,A±) in the way described there, we have

P(S±) = Q̂(A±) .

Proof. It suffices to show that

P(S) = { s ∈ (S+ ∪ S−) \ {0} | qS(s) = 0 } =: eP

holds with the quadratic form qS : S → C, s 7→ 1
2
βS(s, s) .

We first note that both P(S) and eP are invariant under ρ(Γ(V, β)) . For P(S) this was shown in Proposi-

tion 8.29. For s ∈ eP and g ∈ Γ(V, β) , we have either ρ(g)s ∈ S+ \ {0} or ρ(g)s ∈ S− \ {0} , and we have by

Proposition B.30(b)(ii): qS(ρ(g)s) = ε(g)λ(g) · qS(s) = 0 . Thus we have shown ρ(g)s ∈ eP .

Because P(S) is the orbit through 1S of the action of ρ(Γ(V, β)) on S (see Proposition 8.29 and Example 8.28)

and we have 1S ∈ eP , the ρ(Γ(V, β))-invariance of eP already implies P(S) ⊂ eP .

For the converse inclusion, let s ∈ eP be given. We will show that there exists g ∈ Γ(V, β) so that

∃ a, b ∈ C : s′ := ρ(g)s = a · 1S + b · ω (8.81)

holds. Then s ∈ eP implies s′ ∈ eP , whence we see

0 = qS(s′) = 1
2
· βS(a · 1S + b · ω, a · 1S + b · ω) = a b .

Therefore, either a = 0 and then s′ ∈ C× · ω , or else b = 0 and then s′ ∈ C× · 1S holds. In either case, we have

s′ ∈ P(S) (see Example 8.28) and therefore also s = ρ(g−1)s′ ∈ P(S) .

It remains to prove the existence of g ∈ Γ(V, β) so that (8.81) holds. We have s ∈ S+ ∪S− . Let us first consider

the case s ∈ S+ . We choose a basis (w1, . . . , w4) of W and denote by (w′
1, . . . , w

′
4) the basis of W ′ so that

β(wj , w
′
`) = δj` holds, see Proposition B.23. Then {1S , ω} ∪ {wk ∧w` | k < ` } is a basis of S+ . Therefore there

exist a, d ∈ C and ck` ∈ C for k < ` so that s = a 1S +
P

k<` ck` wk ∧ w` + dω holds, and because of s 6= 0 at

least one of these coefficients is non-zero. In fact, we may suppose without loss of generality that a = 1 holds,

as the following argument shows: If a 6= 0 holds, then the homogeneous component of degree 0 of ρ(g ′)s is 1S ,

where g′ := 1
a
· 1C ∈ Γ(V, β) . If ck` 6= 0 holds for some k < ` , then the homogeneous component of degree 0

of ρ(g′)s is 1S , where g′ := 1
ck`

(w` + w′
`) · (wk + w′

k) ∈ Γ(V, β) (see Proposition B.25(a)). If d 6= 0 , then the

homogeneous component of degree 0 of ρ(g′)s is 1S , where g′ := 1
d
(w4 +w′

4) · · · (w1 +w′
1) ∈ Γ(V, β) (again, see

Proposition B.25(a)). Because of the ρ(Γ(V, β))-invariance of eP , we may replace s by ρ(g′)s in any of these

cases.

For every k < ` we now put gk` := 1−ck`wk ·w` ∈ Γ(V, β) (see Proposition B.25(b)) and g :=
Q

k<` gk` ∈ Γ(V, β)

(where the factors are ordered lexicographically). Let k < ` be given and denote by k̃ < ˜̀ the two elements of
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{1, . . . , 4} \ {k, `} . We then have

ρ(gk`)s = ρ(1 − ck` wk · w`)s = s− ck` wk ∧ w` ∧ (1 +
X

k′<`′

ck′`′wk′ ∧ w`′ + d · ω)

= s− ck` wk ∧ w` − ck` ck̃ ˜̀ wk ∧ w` ∧ wk̃ ∧ w˜̀| {z }
=±ω

= s− ck` wk ∧ w` + d′ · ω

with a suitable d′ ∈ C . It follows that

ρ(g)s = s−
X

k<`

ck` wk ∧ w` + d′′ · ω

holds with some d′′ ∈ C . Therefore the homogeneous component of degree 2 of ρ(g)s is zero, and hence ρ(g)s

is of the form of (8.81). This completes the proof of (8.81) for the case s ∈ S+ .

If on the other hand s ∈ S− holds, we fix v ∈ V with q(v) = 1 , then we have v ∈ Γ(V, β) and hence

ρ(v)s ∈ eP ∩ S+ . By the preceding arguments there exists g′ ∈ Γ(V, β) so that ρ(g′)(ρ(v)s) = ρ(g′ · v)s is of the

form of (8.81). Hence (8.81) is satisfied with g := g′ · v ∈ Γ(V, β) . �

8.5.3 The construction of the isomorphism

In the situation of Subsection 8.5.1, we now consider the 6-dimensional complex quadrics Q :=

Q(A) ⊂ IP(V) and Q± := Q(A±) ⊂ IP(S±) . We will construct isomorphisms of Hermitian

symmetric spaces from Q+ and Q− to one and the other of the two connected components of

the congruence family F(IP3, Q) which was studied in Theorem 7.11.

At first, we consider the spaces involved only as homogeneous spaces, not as symmetric spaces.

Originally, the quadric Q is a Hermitian homogeneous Auts(A)0-space (see Corollary 3.4),

likewise Q± is a Hermitian homogeneous Auts(A±)0-space, and the connected components of

F(IP3, Q) are Hermitian homogeneous Auts(A)0-spaces (see Theorem 7.11(c)). But now, we

regard all these spaces as Hermitian homogeneous G-spaces via the actions

χ̃ : G×Q→ Q, (g, p) 7→ χ(g)(p) ,

ρ̃± : G×Q± → Q±, (g, [s]) 7→ ρ±(g)([s])

and χ̃F : G× F(IP3, Q) → F(IP3, Q), (g,Λ) 7→ χ(g)(Λ) .

(Here, we again used the notation B for the holomorphic isometry on IP(V ) induced by some

unitary transformation B of a unitary space V .) The actions χ̃ and ρ̃± are indeed transitive,

and the orbits of χ̃F are indeed the connected components of F(IP3, Q) because χ|G : G →
Auts(A)0 and ρ±|G : G→ Auts(A±)0 are surjective, see Propositions 8.20(c) and 8.23(b).

In the following constructions, we will also use the quadratic cones Q̂± := Q̂(A±) = P(S±) (see

Theorem 8.31) and the manifolds Q̃± := Q̃(A±) = Q̂±∩S(S±) . Moreover, we consider the Hopf

fibrations π : S(V) → IP(V), v 7→ [v] and π± : S(S±) → IP(S±), s 7→ [s] .
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8.32 Proposition. There exists a map h± : Q± → F(IP3, Q) characterized by

∀s ∈ Q̃± : h±([s]) = [{ v ∈ V | ρ(v)s = 0 }] . (8.82)

h± is a holomorphic embedding. The images F(IP3, Q)+ := h+(Q+) and F(IP3, Q)− := h−(Q−)

are the two connected components of F(IP3, Q) . With the transitive G-action χ̃F± := χ̃F|(G ×
F(IP3, Q)±) on F(IP3, Q)± , h± is (ρ̃±, χ̃F±)-equivariant, meaning that (h±, idG) is an isomor-

phism of homogeneous spaces from Q± onto F(IP3, Q)± .

Proof. We use the concept of pure spinors and the corresponding notations introduced in Sub-

section 8.5.2. By Theorem 8.31, we have Q̂± = P(S±) , and hence, Z(s) is a 4-dimensional

isotropic subspace of V for every s ∈ Q̃± by Definition 8.27. Therefore, the maps

h̃± : Q̃± → F(IP3, Q), s 7→ [Z(s)]

indeed have values in F(IP3, Q) . Because Q̃± is connected, h̃± in fact maps into a connected

component of F(IP3, Q) , which we denote by F(IP3, Q)± . No 4-dimensional isotropic subspace

of V has representative spinors in both S+ and S− (by (8.73) in Proposition 8.29), whence

F(IP3, Q)+ 6= F(IP3, Q)− follows. Because F(IP3, Q) has exactly two connected components, we

see that these are F(IP3, Q)+ and F(IP3, Q)− .

From (8.73) we see that there exists a map h± : Q± → F(IP3, Q)± with h± ◦π± = h̃± and that

this map is injective. h± obviously satisfies Equation (8.82), and Proposition 8.29 shows that

it is (ρ̃±, χ̃F±)-equivariant. Proposition A.1 thus shows that h± is a diffeomorphism.

It remains to show the holomorphy of h± . We consider the holomorphic bundle map π̂± :

Q̂± → Q±, s 7→ [s] , the trivial complex vector bundles

τ : Q̂± × V → Q̂±, (s, v) 7→ s and τ ′ : Q̂± × S → Q̂±, (s, s′) 7→ s ,

and the holomorphic vector bundle morphism

j : Q̂± × V → Q̂± × S, (s, v) 7→ (s, js(v)) = (s, ρ(v)s)

between τ and τ ′ over Q̂± . For every s ∈ Q̂± , the kernel of j(s, ·) : v 7→ j(s, v) is the

complex 4-dimensional linear subspace Z(s) , and therefore ker j is a complex subbundle of τ

of complex fibre dimension 4 .

Now let p ∈ Q± be given and choose an open neighbourhood U ∈ Ulo(p,Q±) such that there

exists a holomorphic local section f : U → Q̂± of π̂± . By reducing the size of U if necessary,

we can further arrange that there exists an open neighborhood Û of f(U) in Q̂± on which

there exists a holomorphic frame field (b1, . . . , b4) of the complex vector bundle ker j . If we

then denote by Ŝt4(V) the Stiefel manifold of complex 4-frames in V , by G4(V) the complex

4-Grassmannian over V , and consider the holomorphic projection

pr : ker j → V, (s, v) 7→ v ,

the holomorphic map

g : Ŝt4(V) → G4(V), (v1, . . . , v4) 7→ spanC{v1, . . . , v4}
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and the holomorphic map θ : G4(V) → F(IP3, IP(V)) from Theorem 7.4, then h±|U is equal to

the following composition of holomorphic maps

U
f−→ Û

(b1,...,b4)−→ (ker j) × bQ±
. . . × bQ±

(ker j)
(pr)4−→ Ŝt4(V)

g−→ G4(V)
θ−→ F(IP3, IP(V))

and therefore holomorphic. �

Now we wish to regard Q , Q± and F(IP3, Q)± also as Hermitian symmetric G-spaces. Origi-

nally, Q is a Hermitian symmetric Auts(A)0-space (Proposition 3.9(c)), likewise Q± is a Her-

mitian symmetric Auts(A±)0-space, and F(IP3, Q)± is a Hermitian symmetric Auts(A)0-space

(Theorem 7.11(c)(i)). To regard these spaces as symmetric G-spaces, we apply Proposition A.2

to the situations given by the following table:

Proposition A.2 M ϕ G G̃ ϕ̃ τ

here Q (B, p) 7→ B(p) Auts(A)0 G χ̃ χ|G
here Q± (B, p) 7→ B(p) Auts(A±)0 G ρ̃± ρ±|G
here F(IP3, Q)± (B,Λ) 7→ B(Λ) Auts(A)0 G χ̃F± χ|G

.

Regarding the hypotheses of Proposition A.2, we note that G is simply connected (Proposi-

tion 8.20(b)) and that χ|G : G → Auts(A)0 and ρ±|G : G → Auts(A±)0 are covering maps of

Lie groups (Propositions 8.20(c) and 8.23(b)). It remains to show:

8.33 Proposition. The isotropy groups of the G-actions on Q , Q± and F(IP3, Q)± are connected.

Proof. For χ̃ . Let p ∈ Q be given, and let Kp ⊂ Auts(A)0 be the isotropy group of the action

of Auts(A)0 on Q at p . Then K̃p := χ−1(Kp) ⊂ G is the isotropy group of the action χ̃ at p .

Because Kp is connected (Proposition 3.9(a)) and χ|G : G → Auts(A)0 is a two-fold covering

map (Proposition 8.20(c)), it suffices for the proof of the connectedness of K̃p to show that the

two pre-images 1 and −1 of idV ∈ Kp under χ can be connected in K̃p .

For this purpose, remember that V′ = V (−A) and the subgroup G were constructed with

respect to a fixed A ∈ A . We now consider the CQ-subspace U := spanA{z} = spanC{z,Az}
(with z ∈ π−1({p}) ) of V ; we denote its induced CQ-structure by AU . Then we have by

Proposition 3.9(a)

Kp = {B ∈ Auts(A)0
∣∣B|U ∈ Auts(AU )0 } . (8.83)

U⊥,V,β is a 6-dimensional CQ-subspace of V , and V′ is a maximal, totally real subspace of

V . Consequently, V′ ∩U⊥,V,β is a real-6-dimensional, totally real subspace of V ; moreover the

restriction of β to this space is a negative definite, symmetric, real bilinear form. Therefore,

there exist x1, x2 ∈ V′ ∩ U⊥,V,β with q(x1) = q(x2) = −1 and β(x1, x2) = 0 . Then we have

x1 · x1 = x2 · x2 = −1 and x1 · x2 = −x2 · x1 . (8.84)

We consider the curve

c : IR → C(V, β), t 7→ cos(t) · 1 − sin(t)x1 · x2 .
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We have c(0) = 1 and c(π) = −1 , and by a calculation involving Equations (8.84) one sees

that for any t ∈ IR ,

c(t) = v−(t) · v+(t) holds with v±(t) := sin( t2 )x2 ± cos( t2 )x1 ;

because we have q′(v±(t)) = −1 , the definition of G shows that the curve c runs entirely

in G .28 Moreover, any u ∈ U is β-orthogonal to v+(t) and v−(t) ; because χ(v±(t)) is the

β-orthogonal reflection in the hyperplane (C v±(t))⊥,V,β by Proposition B.12(c), we see that

χ(v±(t))u = u and therefore also χ(c(t))u = χ(v−(t))χ(v+(t))u = u holds. Thus we have

shown χ(c(t))|U = idU ∈ Auts(AU )0 . It follows by Equation (8.83) that c runs entirely in K̃p .

For ρ̃+ . Let [s] ∈ Q+ be given and denote by K̃[s] the isotropy group of ρ̃+ at [s] . Because

TV+ : V → S+ is a CQ-isomorphism (Proposition 8.22(b)), TV+|Q : Q→ Q+ is a holomorphic

isometry. If we put p := (TV+)−1([s]) ∈ Q , we have by Equation (8.67)

∀g ∈ G : ρ̃+(ϑ(g), [s]) = TV+(χ̃(g, p)) .

It follows that K̃[s] = ϑ(K̃p) holds, and is therefore connected by the previous result.

For ρ̃− . Let [s] ∈ Q− be given. A similar argument as that for ρ̃+ shows that the isotropy

group K̃[s] of ρ̃− at [s] satisfies K̃[s] = ϑ2(K̃p) with p := (T+− ◦ TV+)−1([s]) = T−2([s]) ∈ Q

and is therefore also connected.

For χ̃F± . Let Λ ∈ F(IP3, Q)± be given and denote by K̃Λ the isotropy group of χ̃F± at Λ . We

have [s] := h−1
± (Λ) ∈ Q± , and because of the (ρ̃±, χ̃F±)-equivariance of the diffeomorphism h±

(Proposition 8.32), we have K̃Λ = K̃[s] . Therefore K̃Λ is connected by the preceding results.

�

We now regard Q , Q± and F(IP3, Q)± as Hermitian symmetric G-spaces in the way described

above.

8.34 Theorem. (h±, idG) is an isomorphism of Hermitian symmetric spaces from the 6-dimensional

complex quadric Q± onto F(IP3, Q)± . Because the latter space is isomorphic to SO(8)/U(4) ,

we therefore have the following isomorphy of Hermitian symmetric spaces:

Q6 ∼= SO(8)/U(4) .

Proof. (h±, idG) is an isomorphism of homogeneous G-spaces from Q± to F(IP3, Q)± by

Proposition 8.32. Because the Lie group G is of compact type, Proposition A.5 shows that

(h±, idG) is an isomorphism of affine symmetric spaces. Because the symmetric spaces involved

are irreducible Hermitian symmetric spaces, (h±, idG) is in fact an isomorphism of Hermitian

symmetric spaces.

The isomorphy F(IP3, Q)± ∼= SO(8)/U(4) has been shown in Theorem 7.11(c)(i). �

28In fact, c is a 1-parameter subgroup of G . — We also mention that the curve −c is used in [LM89] to prove

the connectedness of the spin group, see [LM89], the proof of Theorem 2.10, p. 20.
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8.35 Remark. The preceding construction of the isomorphism Q6 ∼= F(IP3, Q6)± is not totally

pleasing because different models of the 6-dimensional complex quadric are involved on the

left-hand side and on the right-hand side of the isomorphy (namely Q± and Q , respectively).

However, it is easy to remedy this shortcoming by use of the triality automorphisms.

Indeed, consider the holomorphic isometries

TV+|Q : Q→ Q+ , T+−|Q+ : Q+ → Q− and T−V|Q− : Q− → Q .

Then Equations (8.67)–(8.69) show that (TV+|Q,ϑ) , (T+−|Q+, ϑ) and (T−V, ϑ) are isomor-

phisms of Hermitian homogeneous G-spaces between the respective quadrics; they are in fact

isomorphisms of Hermitian symmetric spaces because of Proposition A.5.

We now put

f+
6 := h+ ◦ (TV+|Q) : Q→ F(IP3, Q)+ and f−6 := h− ◦ (T−V|Q−)−1 : Q→ F(IP3, Q)− ,

also F+
6 := ϑ and F−

6 := ϑ−1 = ϑ2 . Then Theorem 8.34 shows that (f±
6 , F

±
6 ) is an isomorphism

of Hermitian symmetric G-spaces from Q to F(IP3, Q) , as we desired.

Moreover, with

g := h− ◦ (T+−|Q) ◦ h−1
+ : F(IP3, Q)+ → F(IP3, Q)− ,

(g, ϑ) is an isomorphism of Hermitian symmetric G-spaces from F(IP3, Q)+ to F(IP3, Q)− ,

and because of Equations (8.63), the following diagram commutes (in which we abbreviate

F± := F(IP3, Q)± ):

Q

F+ F−

G×Q

G× F+ G× F− .

f+
6

g

f−6

eχ

eχF+ eχF−

F+
6 ×f+

6

ϑ×g

F−
6 ×f−6
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8.36 Remark. It is possible to reconstruct the Plücker embedding and the corresponding two-fold

covering map of Lie groups SU(4) → Auts(A
6)0, B 7→ B(2) , which we used in Section 8.2 to

establish the isomorphism Q4 ∼= G2(C
4) , from the objects of the present section by a suitable

reduction of dimension.

For this purpose, we note that the subspace
∧2W of S+ =

∧evenW is invariant under

A+|
∧2W = (−∗)|∧2W and therefore a CQ-subspace of the CQ-space S+ ; we denote its in-

duced CQ-structure by A′ . It gives rise to the 4-dimensional complex quadric Q′ := Q(A′) ⊂
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IP(
∧2W ) . Q′ is the Plücker quadric { [u1 ∧ u2] |u ∈ Ŝt2(W ) } , which was denoted by Q(∗) in

Section 8.2. Moreover, we consider the Lie subgroup

G′ := ϑ( { g ∈ G |χ(g)w1 = w1 } )

of G , where w1 is the vector which was used to define the triality automorphisms in Subsec-

tion 8.5.1. In this setting, I can prove the following facts:

(a) For any s ∈ Q̂′ := Q̂(A′) , say s = u1 ∧ u2 , we have

Z(s) ∩W = Cu1 ⊕ Cu2 ∈ G2(W ) .

Consequently, the map f : Q′ → G2(W ) uniquely characterized by

∀s ∈ Q̂′ : f([s]) = Z(s) ∩W

is the inverse of the Plücker embedding.

(b) For any g′ ∈ G′ , we have χ(g′)|W ∈ SU(W ) and the map

χ′ : G′ → SU(W ), g′ 7→ χ(g′)|W

is an isomorphism of Lie groups.

Also, for any g′ ∈ G′ , we have ρ+(g′)|
∧2W ∈ Auts(A

′)0 and the map

ρ′ : G′ → Auts(A
′)0, g 7→ ρ+(g)|∧2W

is a two-fold covering map of Lie groups.

(c) Φ := ρ′ ◦ (χ′)−1 is the two-fold covering map of Lie groups

Φ : SU(W ) → Auts(A
′)0, B 7→ B(2) .

Therefore (f−1,Φ) is the almost-isomorphism of Hermitian symmetric spaces from G2(W ) to

Q′ described in Theorem 8.7(c).



Chapter 9

Perspectives

The results on the complex quadric presented in this dissertation give rise to various questions

which are still open. Among them are the following:

• Is it possible to apply the methods used to classify the totally geodesic submanifolds of the

complex quadric to other symmetric spaces?

The classification of totally geodesic submanifolds of the complex quadric is essentially

equivalent to the classification of the curvature-invariant subspaces of its tangent spaces,

and the solution for the latter problem was based on the combination of two important

results: First, the general relations between the roots of a symmetric spaces and the roots of

a Lie triple system in it (Section 4.2), and second, the “geometric” description of the roots

and root spaces of the complex quadric via the theory of CQ-structures (Theorem 3.15).

Let us first discuss the extension of these methods to other irreducible Riemannian sym-

metric spaces of rank 2 . Then the results of Section 4.2 will still give full insight into the

relationship between the root spaces of the symmetric space studied and the root spaces

of its symmetric subspaces. Therefore, the main problem in the case of rank 2 is to find

a replacement for the theory of CQ-structures which is suited to give a description of the

roots and root spaces for the symmetric space.

The geometry of the complex 2-Grassmannians G2(C
n) , which are irreducible Hermitian

symmetric spaces of rank 2 , has been studied by J. Berndt, see [Ber97]. The cited paper

gives in particular the eigenvalues and eigenspaces of the Jacobi operator of G2(C
n) in

terms of the complex structure and the quaternionic structure of the Kähler-quaternionic-

Kähler manifold G2(C
n) (see also Section 8.3). It seems reasonable to hope that this

description might make it possible to expand the method here applied to Qn also to

G2(C
n) .

But for the quaternionic 2-Grassmannians G2(IH
n) I know of no similar approach; the

same is true of the irreducible symmetric spaces of rank 2 and compact type not yet

mentioned, namely those locally isometric to SU(3)/SO(3) , SU(6)/Sp(3) , SO(10)/SU(5) ,

EIII, EIV or G (see [Hel78], p. 518).

231
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For symmetric spaces of rank ≥ 3 , the problem of the classification of totally geodesic

submanifolds becomes much more difficult. It seems likely to me that for this case, a more

powerful description of the relations betweens the roots and root spaces of the ambient

space and of the subspace than that of Section 4.2 is needed. Some similar investigations

for the case of Lie algebras have been carried out by Eschenburg, see [Esc84].

• What can be said about the equipment of congruence families with symmetric structures

and complex structures?

In Chapter 7 we were concerned with congruence families F(N0,M) induced by a homo-

geneous subspace N0 of a Riemannian symmetric space M of compact type. We saw

that such families are always naturally reductive Riemannian homogeneous spaces. On

the other hand, among the specific examples of congruence families we studied, there are

some which are in fact Riemannian symmetric spaces, while others can not be equipped

with such a structure. Also some of the families can be equipped with a complex structure,

while others can not be (even though the ambient space M is Hermitian symmetric).

These observations raise the following questions: Are there (necessary or sufficient) criteria

– formulated in terms of properties of M and N0 – for the existence of a Riemannian

symmetric space structure on F(N0,M) which induces the original naturally reductive

structure? Are there criteria for the possibility to equip F(N0,M) with a complex struc-

ture?

It would of course also be of interest to study further examples of congruence families,

for example those induced in the complex quadric by the other types of totally geodesic

submanifolds.

• Which hypersurfaces of other Hermitian manifolds than IPn are analogous to complex

quadrics?

One possible way to generalize the concept of a complex quadric is as follows:

Let M be a Hermitian manifold and N be a complex hypersurface of M with parallel

second fundamental form. We call N a CQ-hypersurface of M if the shape operator

AN↪→M
η is a conjugation on the unitary space TpN for every p ∈ N and η ∈⊥1

p(N ↪→M) .

If V is a unitary space, then any complex quadric in IP(V) is a CQ-hypersurface of IP(V) ,

as Theorem 1.16 shows. Conversely, because of the rigidity of submanifolds with parallel

second fundamental form (see [Rec99], Abschnitt 17.15, Theorem 1) one can show that

any CQ-hypersurface of IP(V) is a complex quadric in IP(V) .

One can now ask the following questions: What are the CQ-hypersurfaces in other Hermi-

tian manifolds? In what ways is their behavior analogous to that of the complex quadrics

in IP(V) , in what ways is it different?

In my opinion, these questions are of some interest and invite further investigation.



Appendix A

Reductive homogeneous spaces and symmetric spaces

In this appendix, fundamental aspects of the theory of homogeneous and symmetric spaces are

described.

The viewpoint taken here on the theory of symmetric spaces has been strongly influenced by an

unpublished exposition by H. Reckziegel. For the description of the root theory for symmetric

spaces given in Section A.4, an unpublished lecture script by G. Thorbergsson was of help,

as were the books [Hel78] and [Loo69].

The following notation should be kept in mind: If M1,M2,M are sets, f : M1 ×M2 → M is

a map and p0 ∈ M1 , q0 ∈ M2 holds, we consider the maps fp0 : M2 → M, q 7→ f(p0, q) and

f q0 : M1 →M, p 7→ f(p, q0) .

A.1 Reductive homogeneous spaces

Homogeneous spaces. Let M be a manifold and G be a Lie group acting on M via

the action ϕ : G ×M → M . In this setting (M,ϕ) is called a G-space. (M,ϕ) is called

homogeneous if the action of ϕ on M is transitive. Let (M,ϕ) be a homogeneous G-space.

Then we denote for every p ∈ M by Gp the isotropy group of M at p . Gp is closed in G ,

on the quotient space G/Gp there exists one and only one differentiable structure so that the

canonical action

ψ : G× (G/Gp) → (G/Gp), (g1, g2 ·Gp) 7→ (g1g2) ·Gp

is differentiable, and then the map G/Gp → M, g · Gp 7→ ϕ(g, p) becomes a G-equivariant

diffeomorphism (see [Var74], Theorem 2.9.4, p. 77).

Homomorphisms of homogeneous spaces. Suppose that (M,ϕ) is a homogeneous G-

space and (M ′, ϕ′) is a homogeneous G′-space. Let p ∈M and p′ ∈M ′ be given, and suppose

that F : G → G′ is a homomorphism of Lie groups such that F (Gp) ⊂ G′
p′ holds. Then there

233
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exists one and only one map f : M →M ′ with f(p) = p′ so that the diagram

G×M
ϕ

//

F×f
��

M

f

��
G′ ×M ′

ϕ′
// M ′

(A.1)

commutes. Conversely, if F : G → G′ is a homomorphism of Lie groups and f : M →M ′ is a

map (which we do not suppose a priori to be differentiable) so that diagram (A.1) commutes, then

we have F (Gp) ⊂ G′
f(p) for any p ∈M ; also f is necessarily differentiable as Proposition A.1(a)

below shows.

In this spirit, we call a pair (f, F ) consisting of a map f : M →M ′ and a homomorphism of Lie

groups F : G → G′ a homomorphism of homogeneous spaces if Diagram (A.1) commutes. We

call (f, F ) an almost-isomorphism of homogeneous spaces if f is injective and F is a covering

map of Lie groups, then f necessarily is a diffeomorphism (see Proposition A.1(b) below). We

call (f, F ) an isomorphism of homogeneous spaces if moreover F is in fact an isomorphism

of Lie groups. In the case G′ = G , F = idG , we also call simply f (instead of (f, idG) ) a

homomorphism (isomorphism) of homogeneous spaces.

A homogeneous G′-space (M ′, ϕ′) is called a homogeneous subspace of the homogeneous G-space

(M,ϕ) , if M ′ is a submanifold of M , G′ is a Lie subgroup of G and (M ′ ↪→M,G′ ↪→ G) is

a homomorphism of homogeneous spaces.

It is occasionally useful also to speak of homomorphisms of non-homogeneous spaces: If (M,ϕ)

is a G-space and (M ′, ϕ′) is a G′-space, we call a pair (f, F ) consisting of a map f : M →M ′

and a homomorphism of Lie groups F : G → G′ a homomorphism of spaces, if diagram (A.1)

commutes. Again, we do not require f to be differentiable; it should be noted that in this

setting the differentiability of f does not necessarily follow from the differentiability of F .

A.1 Proposition. Let (M,ϕ) be a homogeneous G-space, (M ′, ϕ′) a G′-space and (f, F ) a ho-

momorphism from (M,ϕ) to (M ′, ϕ′) .

(a) f is differentiable and of constant rank.

(b) If also (M ′, ϕ′) is homogeneous, f is injective and F : G → G′ is a surjective submer-

sion29, then f is a diffeomorphism onto M ′ .

Proof. For (a). Fix p ∈ M . Then we have f ◦ ϕp = (ϕ′)f(p) ◦ F and therefore f ◦ ϕp is differentiable.

Because (M,ϕ) is a homogeneous space, ϕp : G → M is a surjective submersion ([Var74], Lemma 2.9.2, p. 76),

whence it follows that f is differentiable. For any g ∈ G , the maps ϕg : M → M and ϕ′
F (g) : M ′ → M ′ are

diffeomorphisms and ϕ′
F (g) ◦ f = f ◦ ϕg holds; the constancy of the rank of f follows by differentiation of the

latter equation.

29If G has countable topology, then the submersivity of the Lie group homomorphism F is already implied by

its surjectivity because of the theorem of Sard.
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For (b). f is differentiable by (a) and surjective because of the equation f ◦ ϕp = (ϕ′)f(p) ◦ F . It also follows

from that equation that f−1 ◦ (ϕ′)f(p) ◦ F = ϕp is differentiable; because (ϕ′)f(p) ◦ F : G → M ′ is a surjective

submersion, we conclude that f−1 is differentiable. �

Riemannian homogeneous spaces. A (homogeneous) G-space (M,ϕ) is called a Riemann-

ian (homogeneous) G-space if M is a Riemannian manifold and ϕg : M → M is an isometry

for every g ∈ G .

If (M,ϕ) and (M ′, ϕ′) are Riemannian homogeneous spaces, we call a homomorphism

(almost-isomorphism, isomorphism) (f, F ) of homogeneous spaces an homomorphism (almost-

isomorphism, isomorphism) of Riemannian homogeneous spaces, if f is a homothetic immersion,

i.e. if

∃ c ∈ IR+ ∀ p ∈M, v,w ∈ TpM : 〈f∗v, f∗w〉M ′ = c · 〈v, w〉M
holds.30 Because of the homogeneity of M it suffices to verify this equation for a fixed p ∈M .

A Riemannian homogeneous G′-space (M ′, ϕ′) is called a Riemannian homogeneous subspace

of the Riemannian homogeneous G-space (M,ϕ) , if M ′ is a submanifold of M , G′ is a Lie

subgroup of G and (M ′ ↪→ M,G′ ↪→ G) is a homomorphism of Riemannian homogeneous

spaces.

Reductive homogeneous spaces. Suppose that (M,ϕ) is a homogeneous G-space and

denote by g the Lie algebra of G , by kp the Lie algebra of the isotropy group Gp at p ∈M .

A reductive structure on (M,ϕ) is a family (mp)p∈M of linear subspaces of g so that

∀p ∈M, g ∈ G :
(

g = kp ⊕ mp and Ad(g)mp = mϕ(g,p)

)
(A.2)

holds. In this situation, we call (M,ϕ, (mp)) or simply M a reductive homogeneous G-space.

If (mp) is a reductive structure and p0 ∈ M , then (mp) is already determined by the datum

(p0,mp0) via (A.2). Conversely, if p0 ∈ M and an Ad(Gp0)-invariant linear subspace m ⊂ g

with g = kp0 ⊕ m is given, there exists one and only one reductive structure (mp) on (M,ϕ)

with mp0 = m . Therefore, we call such a pair (p0,m) a reductive datum for the homogeneous

space (M,ϕ) .

If (M,ϕ, (mp)) and (M ′, ϕ′, (m′
p)) are reductive homogeneous spaces, we call a homomorphism

(almost-isomorphism, isomorphism) (f, F ) of homogeneous spaces a homomorphism (almost-

isomorphism, isomorphism) of reductive homogeneous spaces, if

∀p ∈M : FL(mp) ⊂ m′
f(p)

holds. (M ′, ϕ′, (m′
p)) is called a reductive homogeneous subspace of (M,ϕ, (mp)) if (M ′, ϕ′) is

a homogeneous subspace of (M,ϕ) and (M ′ ↪→ M,G′ ↪→ G) is a homomorphism of reductive

homogeneous spaces.

30We do not require f to be an isometry, because the case c 6= 1 occurs necessarily for example in Theorem 7.10.
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Suppose (M,ϕ, (mp)) is a reductive homogeneous G-space. Then τp : mp → TpM, X 7→
(ϕp)∗Xe is an isomorphism of linear spaces; here we interpret the elements of g ⊃ mp as

left-invariant vector fields on G , and e denotes the neutral element of G .

As was seen by Nomizu, (mp) induces two covariant derivatives on M of particular importance:

the torsion-free canonical covariant derivative of the first kind ∇ (see [Nom54], Theorem 10.1),

characterized by

∀ p ∈M, X, Y ∈ mp : ∇X ϕp∗Y = 1
2 · ϕp∗[X,Y ] (A.3)

and the canonical covariant derivative of the second kind ∇0 (see [Nom54], Theorem 10.2),

characterized by

∀ p ∈M, X, Y ∈ mp : ∇0
X ϕ

p
∗Y ≡ 0 . (A.4)

For every X ∈ mp we denote by γX : IR → G the 1-parameter-subgroup of G induced by

X . Then ϕp ◦ γX : IR → M is a geodesic with respect to ∇0 , and every ∇0-geodesic γ of

M with γ(0) = p can be obtained in this way (see [KN69], Corollary X.2.5, p. 192). Because

the difference tensor ∇−∇0 is skew-symmetric, the ∇0-geodesics and the ∇-geodesics in M

coincide.

If (M ′, ϕ′, (m′
p)) is a reductive homogeneous subspace of (M,ϕ, (mp)) , then M ′ is an affine

submanifold of M (where M and M ′ are either both equipped with the canonical derivative

of the first kind or are both equipped with the canonical derivative of the second kind). Indeed,

for any p ∈M it follows from Equation (A.3) resp. (A.4) that the second fundamental form of

the inclusion M ′ ↪→M vanishes at p .

Naturally reductive homogeneous spaces. (M,ϕ, (mp)) is called a naturally reductive

homogeneous space if (M,ϕ) is a Riemannian homogeneous space, (M,ϕ, (mp)) is a reductive

homogeneous space, and the canonical covariant derivative of the first kind of (M,ϕ, (mp))

coincides with the Levi-Civita derivative induced by the Riemannian metric on M .

If M and M ′ are naturally reductive homogeneous spaces, we call a pair (f, F ) a homomor-

phism (almost-isomorphism, isomorphism) of naturally reductive homogeneous spaces if it is

both a homomorphism (almost-isomorphism, isomorphism) of Riemannian homogeneous spaces

and a homomorphism (almost-isomorphism, isomorphism) of reductive homogeneous spaces

from M to M ′ . The G′-space M ′ is called a naturally reductive homogeneous subspace, if

(M ′ ↪→M,G′ ↪→ G) is a homomorphism of naturally reductive homogeneous spaces.

A.2 Affine symmetric spaces

There are two different ways to look at symmetric spaces, a geometric one and a more Lie

theoretical one. Let us call these in mind:
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The geometric approach. (see [KN69], Section XI.1, p. 223.) A connected affine manifold

(M,∇) is called an affine-symmetric space, if for every p ∈M there exists an affine diffeomor-

phism sp : M → M with s2p = idM so that p is an isolated fixed point of sp . It follows that

Tpsp = −idTpM holds, therefore sp is – if it exists – uniquely determined by these conditions.

For every geodesic γ :] − ε, ε[→ M one has

∀t ∈] − ε, ε[ : sγ(0) ◦ γ(t) = γ(−t) ; (A.5)

because of this fact, sp is called the geodesic symmetry at p . As a consequence of Equa-

tion (A.5), M is geodesically complete.

Every tensor field of type (1, 2r) or (0, 2r+1) which is invariant under all geodesic symmetries

sp vanishes identically. In particular, (M,∇) is torsion-free and its curvature tensor is parallel.

The group A(M) of affine transformations f : M → M is a Lie group (see [Kob72], Theo-

rem II.1.3, p. 41). Because M is complete and connected, already A(M)0 acts transitively on

M , thus (M,ϕ) is a homogeneous A(M)0-space with ϕ : A(M)0 ×M →M, (f, p) 7→ f(p) . If

we fix p0 ∈M and denote the isotropy group of the action of A(M)0 on M at p0 by K , then

σ : A(M)0 → A(M)0, f 7→ sp0 ◦ f ◦ sp0 (A.6)

is an involutive automorphism of the Lie group A(M)0 and

K ⊂ Fix(σ) := { g ∈ A(M)0 |σ(g) = g } and dimK = dimFix(σ)

holds (see [KN69], Theorem XI.1.5, p. 224). As we will see in the Lie theoretical approach below,

the geometry of (M,∇) can be recovered completely from the “datum” (M,ϕ, p0, σ) .

The Lie theoretical approach. (see [KN69], Section XI.2, p. 225.) We now start with the

situation we obtained in the geometric approach above. We suppose that a “datum” (M,ϕ, p0, σ)

is given, where ϕ : G ×M → M, (g, p) 7→ gp is an action of a connected Lie group G on

a manifold M , (M,ϕ) is a homogeneous G-space, p0 ∈ M is called the origin point and

σ : G→ G is an involutive Lie group automorphism with

K ⊂ Fix(σ) := { g ∈ G |σ(g) = g } and dimK = dimFix(σ) ,

where K denote the isotropy group of ϕ at p0 .

Then there exists one and only one differentiable map s : M ×M →M characterized by

∀g1, g2 ∈M : s(g1p0, g2p0) = g1σ(g−1
1 g2)p0 . (A.7)

For every p ∈M , the map

sp := s(p, ·) : M →M

is a diffeomorphism of M satisfying

(sp)
2 = idM , sp(p) = p and Tpsp = −idTpM .

We call sp the symmetry of M at p . The following diagram commutes for any g ∈ G :
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M ×M
s //

ϕg×ϕg

��

M

ϕg

��
M ×M s

// M .

As Nomizu has shown (see [Nom54], Theorem 15.3, p. 54), there exists one and only one

covariant derivative ∇ on M with regard to which the maps sp are affine for every p ∈ M .

Then (M,∇) is an affine-symmetric space in the sense of the geometric approach. ∇ is called

the canonical covariant derivative of the symmetric space M . Furthermore, the diffeomorphisms

ϕg : M →M are all affine.

If M was already equipped with a covariant derivative so that it is an affine-symmetric space

in the sense of the geometric approach, and we perform the construction of the Lie theoretic

approach with G = A(M)0 , an arbitrary origin point p0 ∈ M and σ given by (A.6), then

the canonical covariant derivative of M obtained thereby is identical to the original covariant

derivative on M . For this reason we call in the “Lie theoretic” situation (M,ϕ, p0, σ) (or simply

M , when the other components can be inferred) a symmetric G-space; remember that in this

situation we did not require G = A(M)0 .

Symmetric spaces as reductive homogeneous spaces; canonical decomposition. Let

(M,ϕ, p0, σ) be a symmetric G-space, K the isotropy group of G at p0 , and g and k the

Lie algebras of G and K , respectively. Then the linearization of the involutive Lie group

automorphism σ : G → G is an involutive Lie algebra automorphism σL : g → g with k =

Eig(σL, 1) . If we put m := Eig(σL,−1) , we have g = k ⊕ m ; this decomposition is called the

canonical decomposition of g with respect to σ . It should be noted that generally, m is not a

Lie subalgebra of g ; however we have

AdG(K)m ⊂ m and [m,m] ⊂ k , (A.8)

and therefore in particular

[[m,m],m] ⊂ m . (A.9)

Equation (A.8) shows that (p0,m) is a reductive datum for M , and therefore the affine sym-

metric space M can be regarded as a reductive homogeneous space in a canonical way. In

this situation, the two canonical covariant derivatives of the reductive homogeneous space M

are equal and they coincide with the canonical covariant derivative of the symmetric space M

described above via the symmetries sp .

The map

τ : m → Tp0M, X 7→ (ϕp0)∗Xe (A.10)

is an isomorphism of linear spaces (here, we interpret the elements of m ⊂ g as left-invariant

vector fields on G ; e denotes the neutral element of G ). We have

∀g ∈ K, X ∈ m : τ(AdG(g)X) = (ϕg)∗τ(X) ; (A.11)
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also if we denote the curvature tensor of M by R and for w ∈ Tp0M by Rw := R( · , w)w :

Tp0M → Tp0M the Jacobi operator corresponding to w , we have

∀X,Y,Z ∈ m : R(τX, τY )τZ = −τ([[X,Y ], Z]) , (A.12)

in particular

∀X,Z ∈ m : RτZ(τX) = − ad(Z)2X (A.13)

(see [KN69], Theorem XI.3.2(1), p. 231). τ is called the canonical isomorphism between m and

Tp0M .

We call the symmetric space M irreducible, if the isotropy representation K → GL(Tp0M), g 7→
Tp0ϕg is irreducible (or equivalently, if the adjoint representation K → GL(m), g 7→ AdG(g)|m
is irreducible).

Homomorphisms of symmetric spaces. Let (M,ϕ, p0, σ) be a symmetric G-space and

(M ′, ϕ′, p′0, σ
′) be a symmetric G′-space. If (f, F ) is a homomorphism from the homogeneous

G-space (M,ϕ) to the homogeneous G′-space (M ′, ϕ′) so that

f(p0) = p′0 and σ′ ◦ F = F ◦ σ

holds, then (f, F ) is in fact a homomorphism of reductive homogeneous spaces and f is affine

with respect to the canonical covariant derivatives of the symmetric spaces. Therefore, it is rea-

sonable to call the pair (f, F ) a homomorphism of symmetric spaces. If in this setting (f, F ) is in

fact an (almost-)isomorphism of homogeneous spaces, we call (f, F ) an (almost-)isomorphism

of symmetric spaces. In the case G = G′ , F = idG we also call simply f (in the place of

(f, idG) ) a homomorphism resp. isomorphism of symmetric spaces.

Replacing the group G by its universal cover. Under a condition a symmetric G-space

can also be interpreted as a symmetric G̃-space, where G̃ is the universal covering Lie group of

G .

A.2 Proposition. Let (M,ϕ, p0, σ) be a symmetric G-space, τ : G̃ → G be a universal Lie group

covering of the Lie group G (thus G̃ is simply connected; remember that G was supposed

to be connected) and K ⊂ G the isotropy group of the G-action ϕ at p0 . We require that

τ−1(K) ⊂ G̃ is connected.

Then ϕ̃ := ϕ ◦ (τ × idM ) is a transitive Lie group action of G̃ on M , there exists one and only

one involutive Lie group automorphism σ̃ : G̃ → G̃ with τ ◦ σ̃ = σ ◦ τ , and (M, ϕ̃, p0, σ̃) is a

symmetric G̃-space.

(M,ϕ, p0, σ) and (M, ϕ̃, p0, σ̃) induce the same canonical covariant derivative on M .

Proof. (M, eϕ) is a homogeneous eG-space because ϕ is transitive and τ : eG→ G is surjective.

Because eG is simply connected, there exists one and only one Lie group homomorphism eσ : eG → eG with

τ ◦ eσ = σ ◦ τ . We have τ ◦ eσ ◦ eσ = σ ◦σ ◦ τ = τ , and therefore the Lie group homomorphisms eσ ◦ eσ, id eG : eG → eG



240 Appendix A. Reductive homogeneous spaces and symmetric spaces

are both lifts of the Lie group homomorphism τ : eG → G with respect to the Lie group covering τ : eG → G . It

follows that eσ ◦ eσ = id eG holds, hence eσ is an involutive automorphism.

It is clear that eK := τ−1(K) is the isotropy group of eϕ at p0 . We now show

eK ⊂ Fix(eσ) and dim eK = dim Fix(eσ) . (A.14)

For eK ⊂ Fix(eσ) . For every g ∈ eK we have τ (g) ∈ K ⊂ Fix(σ) , hence τ (eσ(g)) = σ(τ (g)) = τ (g) and therefore

eσ(g) · g−1 ∈ ker(τ ) . Because eK is connected and ker(τ ) is discrete, we therefore have eσ(g) · g−1 = e eG for every

g ∈ eK . Thus, eK ⊂ Fix(eσ) holds.

For dim eK = dim Fix(eσ) . We have eK ⊂ Fix(eσ) and therefore dim eK ≤ dim Fix(eσ) . On the other hand, we have

τ (Fix(eσ)0) ⊂ Fix(σ)0 ⊂ K and therefore Fix(eσ)0 ⊂ eK , hence dim Fix(eσ) = dim Fix(eσ)0 ≤ dim eK .

From (A.14) it follows that (M, eϕ, p0, eσ) is a symmetric eG-space. The symmetries of the symmetric spaces

(M,ϕ, p0, σ) and (M, eϕ, p0, eσ) are equal at every p ∈ M as Equation (A.7) shows, and therefore these spaces

induce the same canonical covariant derivative on M . �

A.3 Riemannian and Hermitian symmetric spaces

We continue to use the notations of the preceding sections with respect to a symmetric G-space

(M,ϕ, p0, σ) . We now further suppose that (M,ϕ) is almost effective, meaning that the Lie

subgroup { g ∈ G |ϕg = idM } of G is discrete.

Examples for almost effective actions. If M is a Riemannian homogeneous space only, G ⊂
I(M) a Lie subgroup which still acts transitively on M and τ : G→ G a covering map of Lie

groups, then the action ϕ : G×M →M, (g, p) 7→ τ(g)p is transitive and almost effective. The

actions considered in Chapter 7 for the construction of congruence families are all constructed

in this way.

Riemannian symmetric spaces. We call a Riemannian metric on the symmetric G-space M

G-invariant if ϕg : M →M is an isometry with respect to this metric for every g ∈ G ; in this

case (M,ϕ) is in particular a Riemannian homogeneous space.

As Equation (A.11) shows, any G-invariant Riemannian metric on M gives rise to a AdG(K)-

invariant inner product on m , which is characterized by the fact that τ : m → Tp0M is a linear

isometry. Conversely, any AdG(K)-invariant inner product 〈〈·, ·〉〉 on m defines via

∀ v, w ∈ Tp0M, g ∈ G : 〈(ϕg)∗v, (ϕg)∗w〉 := 〈〈τ−1v, τ−1w〉〉

a G-invariant Riemannian metric on M . The G-invariant Riemannian metrics on M and the

AdG(K)-invariant inner products on m are in an one-to-one correspondence in this way.

There exist AdG(K)-invariant inner products on m and therefore G-invariant Riemannian

metrics on M if and only if the Lie group AdG(K) ⊂ GL(g) is compact (see [Hel78], Proposition

IV.3.4, p. 209).

If the symmetric space M is irreducible in this situation, two G-invariant Riemannian metrics

on M differ only by a constant factor c ∈ IR+ .



A.4. The root space decomposition of a symmetric space of compact type 241

We call (M,ϕ, p0, σ) a Riemannian symmetric G-space if (M,ϕ) is almost effective and M

is equipped with a fixed G-invariant Riemannian metric. We call a homomorphism (almost-

isomorphism, isomorphism) of symmetric spaces between two Riemannian symmetric spaces a

homomorphism (almost-isomorphism, isomorphism) of Riemannian symmetric spaces, if it also

is a homomorphism of the underlying Riemannian homogeneous spaces.

If M and M ′ are Riemannian symmetric spaces, either of M and M ′ is irreducible and (f, F )

is an almost-isomorphism of affine symmetric spaces from M to M ′ , then both M and M ′

are irreducible and (f, F ) already is an almost-isomorphism of Riemannian symmetric spaces.

Let (M,ϕ, p0, σ) be a Riemannian symmetric G-space. Regarded as a reductive homogeneous

space in the canonical way, M is then naturally reductive (see [KN69], Theorem XI.3.3, p. 232).

Recall that this means that the canonical covariant derivative of the symmetric space M is

identical to the Levi-Civita derivative corresponding to the Riemannian metric of M .

Hermitian symmetric spaces. Suppose that M is a Riemannian symmetric space. We call

a complex structure J on M (i.e. J is an endomorphism field on TM so that J 2 = −idTM
holds) adapted to 〈·, ·〉, if Jp : TpM → TpM is orthogonal for every p ∈ M ; we call J G-

invariant, if the isometry ϕg : M →M is J -holomorphic for every g ∈ G . If M is irreducible,

two G-invariant complex structures on M which are adapted to 〈·, ·〉 differ only in sign. A

Hermitian symmetric space is a Riemannian symmetric space M which is simultaneously a

complex manifold in such a way that its complex structure J is adapted to 〈·, ·〉 and G-invariant.

If M and M ′ are Hermitian symmetric spaces, we call a homomorphism (almost-isomorphism,

isomorphism) of Riemannian symmetric spaces (f, F ) between them a homomorphism (almost-

isomorphism, isomorphism) of Hermitian symmetric spaces, if f is either holomorphic or anti-

holomorphic. If M or M ′ is irreducible, any almost-isomorphism of affine symmetric spaces

already is an almost-isomorphism of Hermitian symmetric spaces.

A.3 Proposition. If (M,ϕ, p0, σ) is a Riemannian (Hermitian) symmetric G-space in the situation

of Proposition A.2, then (M, ϕ̃, p0, σ̃) also is a Riemannian (Hermitian) symmetric G̃-space.

Proof. A G-invariant Riemannian metric (Hermitian structure) on M clearly also is eG-invariant. �

A.4 The root space decomposition of a symmetric space of compact type

The principal sources for this section are an unpublished lecture script by G. Thorbergsson,

and [Loo69], Section VI.1.

Let (M,ϕ, p0, σ) be a Riemannian symmetric G-space; remember that this means in particular

that (M,ϕ) is almost effective. We consider the isotropy group K of ϕ at p0 , the canonical

decomposition g = k ⊕ m of the Lie algebra g of G with respect to σ and the Killing form

κ : g × g → IR, (X,Y ) 7→ tr(ad(X) ◦ ad(Y )) .
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It can be shown that κ is a symmetric bilinear form, that we have for any Lie algebra auto-

morphism L : g → g

∀X,Y ∈ g : κ(L(X), L(Y )) = κ(X,Y ) , (A.15)

and that the almost-effectivity of (M,ϕ) causes κ|(k × k) to be negative definite.

Riemannian symmetric spaces of compact type.

A.4 Definition. The Riemannian symmetric G-space (M,ϕ, p0, σ) is said to be of compact type

if the Killing form κ : g × g → IR is negative definite.

The importance of the concept of a symmetric space of compact type is exemplified by the

following proposition:

A.5 Proposition. Let (M,ϕ, p0, σ) and (M ′, ϕ′, p′0, σ
′) be Riemannian symmetric spaces of com-

pact type over the group G resp. G′ . (Remember that this means in particular that G is

connected.) Moreover, suppose that (f, F ) is an (almost-)isomorphism of the underlying homo-

geneous spaces with f(p0) = p′0 . Then (f, F ) already is an (almost-)isomorphism of symmetric

spaces. (However, note that f does not need to be a homothety.)

Proof. We have to show that σ′ ◦ F = F ◦ σ holds, and because G is connected this equality is already implied

by its linearization

∀X ∈ g : σ′
L(FL(X)) = FL(σL(X)) , (A.16)

where g denotes the Lie algebra of G .

Let us consider the canonical decomposition g = k ⊕ m of g with respect to σ and the canonical decomposition

g′ = k′ ⊕m′ of the Lie algebra g′ of G′ with respect to σ′ . It clearly suffices to show Equation (A.16) for X ∈ k

and for X ∈ m .

Because (f, F ) is an almost-isomorphism of homogeneous spaces, F maps the isotropy group K of ϕ at p0

onto the isotropy group K ′ of ϕ′ at p′0 . k and k′ are the Lie algebras of K and K ′ respectively, and therefore

it follows that FL(k) = k′ holds; because of k = Eig(σL, 1) and k′ = Eig(σ′
L, 1) we conclude that Equation (A.16)

holds for X ∈ k .

We now denote the Killing forms of g and g′ by κ resp. κ′ ; these bilinear forms are negative definite. σL

is an orthogonal involution of (g,κ) by Equation (A.15), and therefore m = Eig(σL,−1) is the κ-orthogonal

complement of k = Eig(σL, 1) . Similarly, m′ is the κ′-orthogonal complement of k′ . Because FL : g → g′ is an

isomorphism of Lie algebras, it is a linear isometry with respect to κ and κ′ , and thus we have

FL(m) = FL(k⊥,κ) = (k′)⊥,κ′

= m
′ .

This equality shows that Equation (A.16) holds for X ∈ m . �
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Cartan subalgebras. From here on, we suppose (M,ϕ, p0, σ) to be a Riemannian symmetric

G-space of compact type.

A.6 Proposition. Let a ⊂ m be a linear subspace. Then the following statements are equivalent:

(a) ∀X,Y,Z ∈ a : [[X,Y ], Z] = 0 .

(b) ∀X,Y ∈ a : [X,Y ] = 0 .

(c) ∀X,Y ∈ a : ad(X) ◦ ad(Y ) = ad(Y ) ◦ ad(X) .

If these statements hold, we call a a flat subspace of m .

Characterization (a) of this proposition reveals the geometric significance of flat subspaces: If

a ⊂ m is a flat subspace and τ : m → Tp0M is the canonical isomorphism (see (A.10)),

then the curvature tensor of M vanishes on τ(a) ⊂ Tp0M by Equation (A.12). Consequently

there exists a (connected, complete) totally geodesic submanifold N of M with p0 ∈ N and

Tp0N = τ(a) , and N is flat, meaning that the curvature tensor of N vanishes identically. Such

flat submanifolds of M are called tori in M .

As will become apparent below, property (c) in the proposition is the reason why flat subspaces

play a fundamental role in the theory of root systems.

Proof of Proposition A.6. For (a) ⇒ (b). Let X, Y ∈ a be given. Then we have

0 = κ( [[X, Y ], X] , Y ) = −κ( ad(X)([X,Y ]) , Y ) = κ( [X, Y ] , ad(X)Y ) = κ( [X, Y ] , [X, Y ] ) ,

whence [X, Y ] = 0 follows by the negative definity of κ . For (b) ⇒ (c). This is an immediate consequence of

the fact that ad : g → End(g) is an homomorphism of Lie algebras. For (c) ⇒ (a). Let X,Y, Z ∈ a be given.

Then we have

[[X, Y ], Z] = ad([X,Y ])Z = (ad(X) ◦ ad(Y ) − ad(Y ) ◦ ad(X))Z
(c)
= 0 .

�

A.7 Definition. (a) The maximal dimension of flat subspaces of m is called the rank of M and

is denoted by rk(M) .

(b) A flat subspace a ⊂ m with dim a = rk(M) is called a Cartan subalgebra of m .

A.8 Theorem. (a) Let a, a′ be two Cartan subalgebras of m . Then there exists g ∈ K (where

K is the isotropy group of the G-action ϕ on M at p0 ) with a′ = Ad(g)a .

(b) Let X ∈ m be given. Then there exists a Cartan subalgebra a ⊂ m with X ∈ a .

Proof. See [Hel78], Theorem V.6.2, p. 246. �
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Roots and the root space decomposition. Because of Theorem A.8(a), any two Cartan

subalgebras in m are geometrically equivalent. Keeping this in mind, we now fix a Cartan

subalgebra a ⊂ m .

The central point of the root theory is to derive direct sum decompositions

m = m1 ⊕ . . .⊕ mk resp. k = k1 ⊕ . . .⊕ kk

such that there exist linear forms λ1, . . . , λk : a → IR so that we have

mj, kj ⊂ Eig(− ad(Z)2, λj(Z)2)

for all Z ∈ a and every j ∈ {1, . . . , k} . In this context the linear forms λj are called roots,

and the mj resp. kj are called roots spaces of m resp. k . The endomorphisms − ad(Z)2|m
are of importance because under the canonical isomorphism τ : m → Tp0M they are conjugate

to the Jacobi operators of M , see Equation (A.13). In the sequel we will show how to obtain

decompositions with the desired property.

Because M is of compact type, 〈·, ·〉 := −cκ is a positive definite inner product on g for any

fixed c ∈ IR+ , and we regard g as a euclidean space in this way.31 Then the endomorphism

ad(X) : g → g is skew-adjoint for every X ∈ g .

We now apply the eigenspace theory to the family (ad(Z))Z∈a of pairwise commuting (see

Proposition A.6(c)), skew-adjoint endomorphisms of g . For this purpose we have to take an

excursion into the complex. We consider the complexification gC = g ⊕ i g of the linear space

g and denote for any X ∈ gC by Re(X), Im(X) ∈ g the elements uniquely characterized by

X = Re(X) + i Im(X) . By extending the Lie bracket of g to a C-bilinear map (which we

again denote by [·, ·] ), gC becomes a complex Lie algebra. We also use the notation ad(X) :=

[X, · ] : gC → gC for X ∈ gC . It should be noted that the complexification of the involutive Lie

algebra automorphism σL of g is an involutive Lie algebra automorphism σC
L : gC → gC with

Eig(σC
L , 1) = k ⊕ i k =: kC and Eig(σC

L ,−1) = m ⊕ im =: mC . Herewith gC = kC ⊕ mC holds.

Moreover, we define a Hermitian inner product 〈·, ·〉C on gC by putting for every X,Y ∈ gC ,

say X = X1 + iX2 and Y = Y1 + i Y2 with Xk, Yk ∈ g ,

〈X,Y 〉C := 〈X1, Y1〉 + 〈X2, Y2〉 + i
(
〈X2, Y1〉 − 〈X1, Y2〉

)
.

Then ad(X) is skew-Hermitian for every X ∈ gC .

The family (ad(Z))Z∈a consists of pairwise commuting, skew-Hermitian endomorphisms of gC .

Consequently, these endomorphisms are jointly diagonalizable in gC , and their eigenvalues are

purely imaginary. It follows that if we put for every IR-linear form λ ∈ a∗ := L(a, IR)

gC
λ := {X ∈ gC | ∀Z ∈ a : ad(Z)X = iλ(Z)X } ,

31The choice of the factor c is of no geometric relevance for any of the following constructions. We permit such

a factor only because it occurs naturally in the construction of the CQ-space structure on the space m in the

case where M is a complex quadric, compare Equation (3.17) in Proposition 3.12(b).
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in particular

gC
0 = {X ∈ gC | [X, a] = {0} } ,

and

∆ := {λ ∈ a∗ \ {0} | gC
λ 6= {0} } , (A.17)

we uniquely obtain the decomposition of gC into a direct sum of linear spaces

gC = gC
0 ⊕ ©

λ∈∆
gC
λ . (A.18)

∆ is called the root system of gC (or of g ) with respect to a ; its elements are called the roots

of gC (or of g ) with respect to a .

In the sequel, two different involutions on g are of importance: (1) the involutive, C-linear

Lie algebra automorphism σC
L : gC → gC , and (2) the conjugation gC → gC, X 7→ X :=

Re(X)− i Im(X) ; this is an anti-linear Lie algebra automorphism of gC . These two involutions

commute with each other.

A.9 Proposition. (a) For every λ ∈ a∗ we have gC
λ = gC

−λ = σC
L(gC

λ ) , in particular

−λ ∈ ∆ ⇐⇒ λ ∈ ∆ .

(b) We have gC
0 = zkC(a) ⊕ aC , where zkC(a) is the centralizer of a in kC , i.e.

zkC(a) = {X ∈ kC | [X, a] = {0} } ,

and aC := a ⊕ i a .

(c) For every λ, µ ∈ a∗ we have [gC
λ , g

C
µ ] ⊂ gC

λ+µ .

Proof. For (a). Let X ∈ gC
λ be given, say X = X1 + iX2 with X1, X2 ∈ g . Then we have for every Z ∈ a

ad(Z)X1 + i ad(Z)X2 = ad(Z)X = iλ(Z)X = −λ(Z)X2 + i λ(Z)X1

and therefore

ad(Z)X1 = −λ(Z)X2 and ad(Z)X2 = λ(Z)X1 .

Via these equations we see that

ad(Z)X = ad(Z)X1 − i ad(Z)X2 = −λ(Z)X2 − i λ(Z)X1 = −i λ(Z)X

and hence X ∈ gC
−λ holds. For Z ∈ a ⊂ mC we also have σC

L(Z) = −Z and therefore

ad(Z)(σC
L (X)) = − ad(σC

L(Z))(σC
L (X)) = −σC

L( ad(Z)X ) = −σC
L( iλ(Z)X ) = −iλ(Z)σC

L(X) ,

hence σC
L(X) ∈ gC

−λ . Thus we have shown gC
λ , σ

C
L(gC

λ ) ⊂ gC
−λ . We also have gC

−λ, σ
C
L(gC

−λ) ⊂ gC
λ and therefore

by the involutivity of � and σC
L : gC

−λ ⊂ gC
λ , σ

C
L(gC

λ ) .

For (b). It is clear from the definition of zkC(a) and the flatness of a that zkC(a) ⊕ a ⊂ gC
0 holds. For the

converse direction, let X ∈ gC
0 be given. Then there exist Xk ∈ kC and Xm ∈ mC with X = Xk +Xm , and we

have for every Z ∈ a

0 = ad(Z)X = [Z,Xk]| {z }
∈mC

+[Z,Xm]| {z }
∈kC

,
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hence [Z,Xk] = 0 and [Z,Xm] = 0 . The first equality shows that Xk ∈ zkC(a) holds. From the second equality

we derive

0 = [Z,Xm] = [Z,Re(Xm)] + i [Z, Im(Xm)]

and therefore

[Z,Re(Xm)] = [Z, Im(Xm)] = 0 .

Because of Re(Xm), Im(Xm) ∈ m and the fact that a is a maximal flat subspace of m , Re(Xm), Im(Xm) ∈ a

and hence Xm ∈ aC holds. Hence we have shown X = Xk +Xm ∈ zkC(a) ⊕ aC .

For (c). Let X ∈ gC
λ and Y ∈ gC

µ be given. Then we have for every Z ∈ a :

ad(Z)([X,Y ]) = [Z, [X, Y ]] = −[X, [Y, Z]] − [Y, [Z,X]] = [X, ad(Z)Y ] − [Y, ad(Z)X]

= [X, iµ(Z)Y ] − [Y, iλ(Z)X] = i(λ(Z) + µ(Z))[X, Y ] .

Thus we see that [X, Y ] ∈ gC
λ+µ holds. �

From the preceding results we now derive the promised root space decompositions for the real

linear spaces k and m . For this purpose, we put for every λ ∈ a∗

kλ := (gC
λ + gC

−λ) ∩ k and mλ := (gC
λ + gC

−λ) ∩ m ; (A.19)

obviously the sum of linear spaces gC
λ + gC

−λ is direct for λ 6= 0 .

A.10 Proposition. (a) We have k0 = zk(a) and m0 = a . Here

zk(a) = {X ∈ k | [X, a] = {0} }

is the centralizer of a in k .

(b) There exist subsets ∆+ ⊂ ∆ so that

∆+ ∪ (−∆+) = ∆ and ∆+ ∩ (−∆+) = ∅

holds. We call any such set ∆+ a set of positive roots of m .

(c) Let ∆+ ⊂ ∆ be a set of positive roots. Then we have

k = zk(a) ⊕ ©
λ∈∆+

kλ and m = a ⊕ ©
λ∈∆+

mλ . (A.20)

The decomposition in (A.20) is called the root space decomposition of k resp. m with

respect to a ; the elements of ∆ are also called roots of k resp. m with respect to a .

(d) For λ ∈ a∗ we have

kλ = {X ∈ k | ∀Z ∈ a : ad(Z)2X = −λ(Z)2X } (A.21)

and mλ = {X ∈ m | ∀Z ∈ a : ad(Z)2X = −λ(Z)2X } . (A.22)

(e) ∆ = {λ ∈ a∗ \ {0} |mλ 6= {0} } .
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Proof. For (a). By Equation (A.19) and Proposition A.9(b) we have k0 = gC
0 ∩ k = (zkC(a) ⊕ aC) ∩ k = zk(a) and

m0 = gC
0 ∩ m = (zkC(a) ⊕ aC) ∩ m = a .

For (b). This is simply a consequence of the fact that we have (λ ∈ ∆ ⇔ −λ ∈ ∆) for every λ ∈ a∗ , see

Proposition A.9(a).

For (c). We prove the decomposition for k ; the decomposition for m is verified analogously. Because of (a), the

decomposition equation to be proved for k is equivalent to

k = ©
λ∈∆+∪{0}

kλ . (A.23)

It is clear from the definition of kλ that the sum in (A.23) is indeed direct and that the inclusion “⊃” holds. For

the converse inclusion, we let X ∈ k be given. By the decomposition equation (A.18) there exist Xλ ∈ gC
λ for

λ ∈ ∆ ∪ {0} so that

X = X0 +
X

λ∈∆

Xλ

holds. Because of X ∈ k , we have X = X = σC
L(X) and therefore

4X = X +X + σC
L(X) + σC

L(X)

= X0 +X0 + σC
L(X0) + σC

L(X0)| {z }
=:Z0

+
X

λ∈∆

`
Xλ +Xλ + σC

L (Xλ) + σC
L (Xλ)

´

= Z0 +
X

λ∈∆+

`
Xλ + σC

L(Xλ) +X−λ + σC
L(X−λ)| {z }

=:Yλ

´
+
X

λ∈∆+

`
Xλ + σC

L(Xλ) +X−λ + σC
L(X−λ)| {z }

=:Y
−λ

´

= Z0 +
X

λ∈∆+

`
Yλ + Y−λ ) .

By Proposition A.9(a) we have Z0 ∈ gC
0 and Yλ ∈ gC

λ for λ ∈ ∆ . Moreover we see that Z0 = Z0 = σC
L(Z0) ,

hence Z0 ∈ k , and Yλ = Y−λ = σC
L(Yλ) holds. It follows by Equation (A.19) that we have Z0 ∈ k0 and

Zλ := Yλ + Y−λ ∈ kλ for λ ∈ ∆+ . Because we have

X = 1
4

X

λ∈∆+∪{0}
Zλ ,

this completes the proof of Equation (A.23).

For (d). We prove Equation (A.21); Equation (A.22) is again shown analogously. In Equation (A.21), the inclusion

“⊂” is obvious. For the converse inclusion, we let λ ∈ a∗ and X ∈ k be given so that

∀Z ∈ a : ad(Z)2X = −λ(Z)2X (A.24)

holds. We fix a system of positive roots ∆+ ⊂ ∆ , then by (c) there exist Xµ ∈ kµ for µ ∈ ∆+ ∪ {0} so that

X =
X

µ∈∆+∪{0}
Xµ (A.25)

holds. We now calculate ad(Z)2X for Z ∈ a in two different ways:

ad(Z)2X

8
>>><
>>>:

(A.25)
= ad(Z)2

` X

µ∈∆+∪{0}
Xµ

´
=

X

µ∈∆+∪{0}
ad(Z)2Xµ = −

X

µ∈∆+∪{0}
µ(Z)2 Xµ

(A.24)
= −λ(Z)2X

(A.25)
= −

X

µ∈∆+∪{0}
λ(Z)2 Xµ .

Because of the directness of the sum in (A.20), this calculation shows that whenever Xµ 6= 0 holds for some

µ ∈ ∆+ ∪ {0} , we have µ(Z)2 = λ(Z)2 for every Z ∈ a and therefore it is easy to prove that µ = ±λ . Thus

Equation (A.25) shows that X ∈ kλ holds.

For (e). Let λ ∈ a∗ \ {0} be given. If {0} 6= mλ = (gC
λ ⊕ gC

−λ) ∩ m holds, then we have gC
λ ⊕ gC

−λ 6= {0} and

therefore (because of gC
−λ = gC

λ , see Proposition A.9(a)) gC
λ 6= {0} . Therefrom λ ∈ ∆ follows by Equation (A.17).
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Conversely, we suppose that λ ∈ ∆ holds, then we have gC
λ 6= {0} by Equation (A.17). We fix X ∈ gC

λ \ {0} and

consider the elements

Y1 := X +X − σC
L(X) − σC

L(X) and Y2 := i · (X −X − σC
L(X) + σC

L(X)) .

Y1 and Y2 are �-invariant and therefore members of g ; they also satisfy σL(Yk) = −Yk and therefore we

have Y1, Y2 ∈ m . By Proposition A.9(a) we moreover have Y1, Y2 ∈ gC
λ ⊕ gC

−λ and therefore Y1, Y2 ∈ mλ by

Equation (A.19). We will now show that Y1 and Y2 cannot simultaneously be zero; therefrom it follows that

mλ 6= {0} holds.

Assume to the contrary that Y1 = Y2 = 0 holds. We thus have

X +X − σC
L(X) − σC

L(X) = 0 = − (X −X − σC
L(X) + σC

L(X))

and therefore X = σC
L(X) , whence X ∈ gC

λ ∩ gC
−λ = {0} follows because of Proposition A.9(a). This is a

contradiction to X 6= 0 . �

At the beginning of the present subsection, we motivated our investigation of the roots and

root spaces by the relationship of these objects to the eigenvalues and eigenspaces of the Jacobi

operators. We now make this relationship explicit:

A.11 Proposition. For any Z ∈ a we put RZ := − ad(Z)2|m : m → m (under the canonical

isomorphism τ : m → Tp0M this endomorphism is conjugate to a Jacobi operator of M , see

Equation (A.13)), and for any function µ : a → IR we define32

Eµ :=
⋂

Z∈a

Eig(RZ , µ(Z)) = {X ∈ m | ∀Z ∈ a : ad(Z)2X = −µ(Z)X } (A.26)

and

Σ := {µ : a → IR |Eµ 6= {0} } . (A.27)

(a) Σ is related to the root system ∆ by

Σ = {λ2 |λ ∈ ∆ }∪̇{0} (A.28)

and conversely

∆ = {λ ∈ a∗ \ {0} |λ2 ∈ Σ } . (A.29)

The spaces Eµ are related to the root spaces of m by

∀λ ∈ a∗ : mλ = Eλ2 , (A.30)

in particular E0 = a 6= {0} .

(b) Σ is a finite set and we have

m = ©
µ∈Σ

Eµ . (A.31)

32For Equation (A.26) remember that we use the notation Eig(B, λ) := ker(B − λ id) even when λ is not an

eigenvalue of B , compare Section 0.2.
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Proof. The family (RZ)Z∈a consists of pairwise commuting, self-adjoint endomorphisms of m , and therefore the

spaces Eµ are pairwise orthogonal. Therefrom it follows that Σ is finite and that the sum in Equation (A.31) is

indeed orthogonally direct.

By Proposition A.10(d) we have for every λ ∈ a∗

mλ =
\

Z∈a

Eig(RZ , λ(Z)2) ;

therefore Equation (A.26) implies Equation (A.30). From Equation (A.30) we derive that the inclusion “⊃” in

Equation (A.28) holds, and therefore we have

m
(∗)
= a ⊕ ©

λ∈∆+

mλ
(A.30)

= E0 ⊕ ©
λ∈∆+

Eλ2 ⊂ ©
µ∈Σ

Eµ ⊂ m

(where ∆+ ⊂ ∆ is a positive root system; for the equals sign marked (∗) see Proposition A.10(c)). Therefrom it

follows that Equation (A.31) holds.

From Equation (A.31) we see in the following way that also the inclusion “⊂” in Equation (A.28) holds: Assume

that there existed some µ0 ∈ Σ \ ({λ2 |λ ∈ ∆ } ∪ {0}) . Then Eµ0 ⊂ m is perpendicular to Eµ for every

µ ∈ { λ2 |λ ∈ ∆ } ∪ {0} and therefore to

E0 ⊕ ©
λ∈∆+

Eλ2
(A.30)

= a ⊕ ©
λ∈∆+

mλ = m .

Therefore Eµ0 = {0} holds, in contradiction to µ0 ∈ Σ .

Finally, we show Equation (A.29). Its inclusion “⊂” is an immediate consequence of Equation (A.28). Conversely,

we let λ ∈ a∗ \ {0} be given such that λ2 ∈ Σ holds. Then we have mλ = Eλ2 6= {0} and therefore λ ∈ ∆ by

Proposition A.10(e). �

Related vectors.

A.12 Definition. For λ ∈ ∆ , elements X ∈ mλ and X̂ ∈ kλ are called related to each other if

∀Z ∈ a :
(

ad(Z)X = λ(Z) · X̂ and ad(Z)X̂ = −λ(Z) ·X
)

holds.

A.13 Proposition. We fix λ ∈ ∆ .

(a) For every X ∈ mλ there exists one and only one X̂ ∈ kλ which is related to X , and the

map Φλ : mλ → kλ, X 7→ X̂ is an isomorphism of linear spaces. In particular we have

dim(kλ) = dim(mλ) ; this number is called the multiplicity of the root λ and is denoted by

nλ .

(b) We have

∀X ∈ mλ : [X,Φλ(X)] = 〈X,X〉 · λ] ,

where λ] ∈ a is the Riesz vector of λ , i.e. the vector uniquely characterized by 〈·, λ]〉|a =

λ .
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Proof. For (a). Let us consider the anti-linear involution τ : gC
λ → gC

λ , H 7→ σC
L(H) (see Proposition A.9(a)).

Putting g±
λ := Eig(τ,±1) , we then have

g
C
λ = g

+
λ ⊕ g

−
λ and g

−
λ = i g+

λ .

We now show

∀X, bX ∈ g :
“ n

X ∈ mλ and bX ∈ kλ holds,

and X and bX are related to each other

o
⇐⇒ bX + iX ∈ g

+
λ

”
. (A.32)

For the proof of (A.32), we first suppose that X ∈ mλ and bX ∈ kλ are related to each other. Then we have for

every Z ∈ a

ad(Z)( bX + iX) = ad(Z) bX + i ad(Z)X = −λ(Z)X + i λ(Z) bX = i λ(Z) ( bX + iX)

and therefore bX+ iX ∈ gC
λ . Moreover, we have (because of X, bX ∈ g ) X = X , bX = bX and (because of X ∈ m ,

bX ∈ k ) σL(X) = −X , σL( bX) = bX , whence we obtain

τ ( bX + iX) = σC
L ( bX) − i σC

L(X) = bX + iX

and therefore bX + iX ∈ g+
λ .

For the converse direction, we let bX,X ∈ g be given so that H := bX + iX ∈ g+
λ holds. Then we have

bX + iX = H = τ (H) = σC
L(H) = σL( bX) − i σL(X)

and therefore σL( bX) = bX , σL(X) = −X . This shows that bX ∈ k and X ∈ m holds. Moreover, because of

H ∈ g+
λ ⊂ gC

λ we have for every Z ∈ a

ad(Z) bX + i ad(Z)X = ad(Z)H = i λ(Z)H = i λ(Z) ( bX + iX) = −λ(Z)X + i λ(Z) bX

and therefore

ad(Z) bX = −λ(Z)X and ad(Z)X = λ(Z) bX . (A.33)

Equations (A.33) show that

ad(Z)2 bX = −λ(Z)2 bX and ad(Z)2 X = −λ(Z)2 X

holds, whence bX ∈ kλ and X ∈ mλ follows by Proposition A.10(d). Equations (A.33) now show that X and bX
are related to each other. This completes the proof of (A.32).

(A.32) shows in particular that for every H ∈ g+
λ we have Re(H) ∈ kλ and Im(H) ∈ mλ , so that we may

consider the IR-linear maps

R := (Re |g+
λ : g

+
λ → kλ) and I := (Im |g+

λ : g
+
λ → mλ) .

Immediately, we will show that R and I are linear isomorphisms. Therefrom follows the existence and uniqueness

statement of (a) because of (A.32) ; moreover it follows that Φλ = R ◦ I−1 : mλ → kλ is a linear isomorphism

and hence dim(kλ) = dim(mλ) holds.

We now show that R is a linear isomorphism; analogously one shows that also I is a linear isomorphism. For the

proof of the injectivity of R , suppose that H ∈ g+
λ is given such that R(H) = 0 holds. Thus we have H = iX

with some X ∈ g . By (A.32) we have X ∈ mλ and X is related to 0 ∈ kλ . Therefore we have for every Z ∈ a

0 = ad(Z) 0 = −λ(Z)X .

Because of λ 6= 0 , therefrom X = 0 and thus H = 0 follows.

For the proof of the surjectivity of R , let bX ∈ kλ be given. By definition of kλ , there exist bX+ ∈ gC
λ and

bX− ∈ gC
−λ so that bX = bX+ + bX− holds. We have bX = bX (because of bX ∈ g ); because the involution �

interchanges the spaces gC
λ and gC

−λ (Proposition A.9(a)) and we have gC
λ ∩ gC

−λ = {0} , it follows that

bX± = bX∓ (A.34)
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holds. Also, because of bX ∈ k we have σC
L( bX) = bX , whence we deduce similarly

σC
L( bX±) = bX∓ . (A.35)

We now put

X := (−i) ( bX+ − bX−) .

Then we have

X = i ( bX+ − bX−)
(A.34)

= i ( bX− − bX+) = X

and therefore X ∈ g . We have H := bX + iX = 2 bX+ ∈ gC
λ and

τ (H) = 2 τ ( bX+) = 2 σC
L( bX+)

(A.34)
= 2σC

L ( bX−)
(A.35)

= 2 bX+ = H ,

and therefore H ∈ g+
λ . Clearly, R(H) = bX holds.

For (b). Let X ∈ mλ be given and put bX := Φλ(X) ∈ kλ . We have [X, bX] ∈ m . Also we have H := bX + iX ∈

g+
λ ⊂ gC

λ by (A.32) and therefore H = bX − i X ∈ gC
−λ by Proposition A.9(a), hence we have [H,H] ∈ gC

0 by

Proposition A.9(c). Because we have

[H,H] = [ bX + iX, bX − iX] = 2i [X, bX]

it follows that we have [X, bX] ∈ gC
0 . Thus we have shown [X, bX] ∈ gC

0 ∩ m = a (see Proposition A.9(b)). Now

we have for every Z ∈ a (because 〈·, ·〉 is defined via the Killing form κ )

〈[X, bX], Z〉 = −〈X, [Z, bX ]〉 = −〈X,−λ(Z)X〉 = 〈 〈X,X〉λ] , Z〉 .

Therefrom the statement follows. �

The Weyl group.

A.14 Definition. For λ ∈ ∆ we denote by Rλ : a → a the orthogonal reflection in the hyperplane

λ−1({0}) . Then the group of orthogonal transformations of a generated by {Rλ |λ ∈ ∆ } is

called the Weyl group W . Its elements are called Weyl transformations. The Weyl group also

acts on a∗ via the action W × a∗ → a∗, (g, λ) 7→ λ ◦ g−1 .

We note that we have

∀λ ∈ a∗, g ∈W : (λ ◦ g)] = g(λ]) , (A.36)

and therefore the actions of the Weyl group W on a∗ and a correspond to each other under

the map a∗ → a, λ 7→ λ] .

A.15 Proposition. (a) Let us denote the isotropy group of the action of G on M at the origin

point p0 by K . Then for every g ∈W there exists ĝ ∈ K so that g = Ad(ĝ)|a holds.

For g = Rλ with λ ∈ ∆ such a ĝ ∈ K can be given in the following way: Let X ∈ S(mλ)

be given and let X̂ ∈ kλ \ {0} be related to X . Then

ĝ := Exp( π
‖λ]‖ · X̂ ) ∈ K (π = 3.14 . . . )

has the property Ad(ĝ)|a = Rλ , where Exp : k → K is the exponential map of K .
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(b) For any g ∈W we have

∀λ ∈ a∗ :
(
λ ◦ g−1 ∈ ∆ ⇐⇒ λ ∈ ∆ and mλ◦g−1 = Ad(ĝ)mλ

)
; (A.37)

here ĝ ∈ K is chosen so that g = Ad(ĝ)|a holds (see (a)).

Therefore W leaves ∆ invariant.

Proof. For (a). (See [Loo69]: Proposition VI.2.2, p. 67 and the definition of the Weyl group on p. 64; for the

following proof, also see Lemma VI.1.5(c), p. 62.)

It suffices to prove the second part of (a). For this we let λ , X and bX be as in the proposition. Then we

consider the 1-parameter subgroup t 7→ Exp(t bX) of K tangential to bX and the induced 1-parameter subgroup

t 7→ Ad(Exp(t bX))|m of O(m) . We study the action of the latter 1-parameter subgroup on the linear space a ;

specifically we will show

∀t ∈ IR : Ad( Exp(t bX) )λ] = cos( t‖λ]‖ ) · λ] + sin( t‖λ]‖ ) ‖λ]‖ ·X (A.38)

and

∀t ∈ IR : Ad( Exp(t bX) )|(kerλ) = idker λ . (A.39)

By plugging t := π
‖λ]‖ into these equations, Ad(bg)|a = Rλ follows.

For the proof of Equations (A.38) and (A.39): Let Z ∈ a be given. Then we have by Definition A.12

ad( bX)Z = − ad(Z) bX = λ(Z) ·X (A.40)

and by Proposition A.13(b)

ad( bX)2Z
(A.40)

= λ(Z) · [ bX,X] = −λ(Z) · λ] . (A.41)

In particular we have

ad( bX)λ] = ‖λ]‖2 ·X and ad( bX)2λ] = −‖λ]‖2 · λ] . (A.42)

We therefore have for n ≥ 1

ad( bX)2nZ = ad( bX)2n−2 ad( bX)2Z
(A.41)

= −λ(Z) · ad( bX)2n−2λ] (A.42)
= (−1)n λ(Z) ‖λ]‖2n−2 · λ] (A.43)

and

ad( bX)2n+1Z = ad( bX) ad( bX)2nZ
(A.43)

= (−1)n λ(Z) ‖λ]‖2n−2 · ad( bX)λ] (A.42)
= (−1)n λ(Z) ‖λ]‖2n ·X ; (A.44)

by comparison with (A.40) we see that Equation (A.44) is also true for n = 0 .

If we now denote by exp : End(g) → GL(g) the usual exponential map of endomorphisms, we have for any t ∈ IR

Ad( Exp(t bX) )Z = exp( ad(t bX) )Z =
∞X

n=0

1
n!

ad(t bX)nZ =
∞X

n=0

tn

n!
ad( bX)nZ

=

 
Z +

∞X

n=1

t2n

(2n)!
ad( bX)2nZ

!
+

 ∞X

n=0

t2n+1

(2n+1)!
ad( bX)2n+1Z

!

(A.43)

(A.44)
=

 
Z + λ(Z)

‖λ]‖2

∞X

n=1

(−1)n (t ‖λ]‖)2n

(2n)!
λ]

!
+ ‖λ]‖

 
λ(Z)

‖λ]‖2

∞X

n=0

(−1)n (t ‖λ]‖)2n+1

(2n+1)!
X

!
(A.45)

In the case Z ∈ kerλ , Equation (A.45) shows that we have Ad( Exp(t bX) )Z = Z , and therefore Equation (A.39)

holds. Moreover, we have λ(λ]) = ‖λ]‖2 and thus we obtain Equation (A.38) by plugging Z = λ] into (A.45).
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For (b). We have Ad(bg)a = a , and we have Ad(bg)m = m by (A.8). For any λ ∈ a∗ we therefore have by

Proposition A.10(d)

Ad(bg)mλ = {Ad(bg)X |X ∈ m, ∀Z ∈ a : ad(Z)2X = −λ(Z)2X }

= {X ∈ Ad(bg)m | ∀Z ∈ a : ad(Z)2(Ad(bg)−1X) = −λ(Z)2 (Ad(bg)−1X) }

= {X ∈ m | ∀Z ∈ a : Ad(bg)−1
`

ad(Ad(bg)Z)2X
´

= Ad(bg)−1
`
− λ(Z)2X

´
}

= {X ∈ m | ∀Z ∈ a : ad(Ad(bg)Z)2X = −λ(Z)2X }

= {X ∈ m | ∀Z ∈ Ad(bg)a : ad(Z)2X = −(λ ◦ Ad(bg)−1)(Z)2X }

= {X ∈ m | ∀Z ∈ a : ad(Z)2X = −(λ ◦ g−1)(Z)2X } = mλ◦g−1 .

This also shows that λ ∈ ∆ is equivalent to λ ◦ g−1 ∈ ∆ , and therefore ∆ is invariant under W . �
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Appendix B

The Spin group, its representations and the Principle

of Triality

For n ≥ 3 , the fundamental group of SO(n) is isomorphic to ZZ/2ZZ . Consequently, there

exists a two-fold Lie group covering map χ : Spin(n) → SO(n) ; the universal covering group

Spin(n) is called the spin group of IRn . χ is a linear representation of Spin(n) on IRn , it is

called the vector representation of Spin(n) . It is clear that any representation of SO(n) gives

rise to an representation of Spin(n) on the same space via χ . However, as was first noted by

È. Cartan, there is a representation ρ of Spin(n) on a linear space S which does not arise

in this way, and which Cartan called the spin representation of Spin(n) ; in this context S is

called the spinor space. Analogous considerations can be made in the complex case, leading to

the complex spin group Spin(n,C) and its vector and spin representations. These objects will

be constructed in Sections B.4 and B.5 of the present appendix.

In the theory of the spin groups, the case n = 8 plays a special role. As will be described in

Section B.6, there exists an automorphism of Spin(8,C) of order 3 which does not descend to

an automorphism of SO(8,C) and which describes an “isomorphy” between the vector repre-

sentation and the spin representation of Spin(8,C) in this case.33 This phenomenon is called

the principle of triality.

Together with the correspondence between certain spinors and maximal isotropic subspaces

described in Section 8.5.2, the principle of triality provides the fundament of the construction

of the isomorphism between Q6 and SO(8)/U(4) in Chapter 8.

The basis for the mentioned constructions are the Clifford algebras, which are introduced in

Section B.3.

The principal sources on which this appendix is based are [LM89], [Che54] and [Rec04].

33Such an automorphism can also be constructed in the real case. For a treatment of the real case, see [Har90],

Chapter 14, p. 271ff. or [Por95], Chapter 24, p. 256 (the former reference also treats the case where IR8 is equipped

with an inner product of signature (4, 4) ). Both references make use of the octonions (Cayley octaves) to describe

the triality automorphism. For the positive definite real case, I know of no treatment of triality avoiding them.

255
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Throughout this appendix, we presume all algebras to be associative IK-algebras with a unit

element non-equal to zero, unless noted otherwise (for example, by the specification “Lie alge-

bra”).34 If A is such an algebra, it contains a subalgebra isomorphic to the field IK in such a

way that 1 ∈ IK corresponds to the unit element of A . Therefore it is reasonable to denote

the unit of A by 1A or simply by 1 . We also require that any homomorphism ϕ : A → A′

between algebras maps 1A onto 1A′ , and when we speak of a subalgebra AM of A generated

by some set M ⊂ A , we require 1A ∈ AM .

B.1 The tensor algebra and the exterior algebra

As a preparation for the introduction of Clifford algebras, we briefly remember fundamental

facts about the tensor algebra and the exterior algebra of a linear space V .

The tensor algebra. (See [Lan93], §XVI.7, p. 632ff.) There exists an algebra T which

contains IK⊕ V as a linear subspace in such a way that 1 ∈ IK is the unit of T and which has

the following universal property:

For every linear map f : V → A into another algebra A there exists one and only one algebra

homomorphism ψ : T → A with ψ|V = f .

If T, T̃ are two such algebras, there exists an algebra isomorphism Φ : T → T̃ with Φ|(IK⊕V ) =

idIK⊕V . Any such algebra is called (a model of) the tensor algebra of V . In the sequel, we

denote by
⊗
V a model of the tensor algebra of V , and we denote the product of x, y ∈ ⊗V

by x⊗y . As algebra
⊗
V is generated by V .

⊗
V is infinite-dimensional if V 6= {0} ; in fact,

if (b1, . . . , bn) is a basis of V then

{ bj1 ⊗ . . .⊗ bjk | k ∈ IN0, j1, . . . , jk ∈ {1, . . . , n} }

is a basis of the linear space
⊗
V (here we define the “empty product” bj1 ⊗ . . .⊗bj0 := 1⊗V ).

The exterior algebra. There exists an algebra S which contains IK⊕V as a linear subspace

in such a way that 1 ∈ IK is the unit of S and that v · v = 0 holds for any v ∈ V ⊂ S , and

which has the following universal property:

For every linear map f : V → A into another algebra A which satisfies f(v) · f(v) = 0 for

every v ∈ V , there exists one and only one algebra homomorphism ψ : S → A with ψ|S = f .

If S, S̃ are two such algebras, there exists an algebra isomorphism Φ : S → S̃ with Φ|(IK⊕V ) =

idIK⊕V . Any such algebra is called (a model of) the exterior algebra of V . In the sequel, we

denote by
∧
V a model of the exterior algebra of V , and we denote the product of x, y ∈ ∧V

34In Section B.6, we will study the triality algebra (T, �) which is not associative and does not have a unit

element.
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by x∧y . As algebra
∧
V is generated by V . If dimV = n holds, then we have dim

∧
V = 2n ;

in fact if (b1, . . . , bn) is a basis of V then

{ bj1 ∧ . . . ∧ bjk | 0 ≤ k ≤ n, 1 ≤ j1 < . . . < jk ≤ n }

is a basis of the linear space
∧
V (here we define the “empty product” bj1 ∧ . . .∧bj0 := 1∧V ).35

For r ≥ 0 , the linear subspace

∧rV := span{ v1 ∧ . . . ∧ vr | v1, . . . , vr ∈ V }

of
∧
V is called (a model of) the r-fold exterior product of V . The elements of

∧rV are called

r-vectors; the elements of
∧2V are also called bivectors. Note that

∧0V = IK and
∧1V = V

holds, and also that for 2 ≤ r ≤ n − 1 not every r-vector is of the form v1 ∧ . . . ∧ vr (the

latter are called decomposable r-vectors). We have dim
∧rV =

(n
r

)
, in particular

∧rV = {0}
for r > n . To simplify the notation, we put

∧−rV := {0} . We have
∧
V = ©n

r=0

∧rV ,

and if a given ξ ∈ ∧V is decomposed as ξ =
∑n

r=0 ξr with ξr ∈ ∧rV , then ξr is called the

homogeneous component of degree r of ξ . We note that the product ∧ of
∧
V observes the

following permutation law:

∀ξ ∈ ∧rV , η ∈ ∧sV : ξ ∧ η = (−1)rs η ∧ ξ . (B.1)

We also define the linear subspace
∧oddV := ©r∈{ 2r′−1 | r′∈IN, 2r′−1≤n }

∧rV and the subalgebra∧evenV := ©r∈{ 2r′ | r′∈IN, 2r′≤n }
∧rV of

∧
V .

As a consequence of the universal property of
∧
V , we see that for any linear endomorphism

B : V → V there exists one and only one algebra endomorphism B̃ :
∧
V → ∧

V with

B̃|V = B ; it satisfies B̃(
∧rV ) ⊂ ∧rV for all r ≥ 0 . We put B(r) := B̃|∧rV :

∧rV → ∧rV ;

the linear map B(r) is characterized by

∀v1, . . . , vr ∈ V : B(r)(v1 ∧ . . . ∧ vr) = Bv1 ∧ . . . ∧Bvr .

B.1 Proposition. (Theorem of Beez) For any B1, B2 ∈ End(V ) with rk(B1) ≥ 3 , B
(2)
1 = B

(2)
2

already implies B1 = ±B2 .

B.2 The Hodge operator

In this section only, V is an n-dimensional oriented36 euclidean resp. unitary space. Its inner

product 〈·, ·〉 induces an inner product on
∧
V , which we also denote by 〈·, ·〉 and which is

characterized by the following two properties:

(i) ∀v1, . . . , vn, w1, . . . , wn ∈ V : 〈v1 ∧ . . . ∧ vn, w1 ∧ . . . ∧wn〉 = det(〈vj , wk〉)j,k=1,...,n .

(ii)
∧kV and

∧`V are orthogonal to each other for k 6= ` .

35As we will see in Section B.3,
V
V is a Clifford algebra for V equipped with the quadratic form which

vanishes identically on V . This observation provides an elegant way to derive the existence and uniqueness of

the exterior algebra of V , as well as the preceding statements about
V
V from results of Section B.3.

36For the concept of an orientation on a complex linear space, see the Introduction.
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For any positively oriented orthonormal resp. unitary basis (a1, . . . , an) of V

ω := a1 ∧ . . . ∧ an

is a unit vector in the one-dimensional space
∧nV , which does not depend on the choice of

(a1, . . . , an) . ω is called the positive unit n-vector of V .

B.2 Proposition. Let ω be the positive unit n-vector of V .

(a) For every k ∈ {0, . . . , n} and η ∈
∧kV there is one and only one ∗η ∈

∧n−kV so that

∀ξ ∈ ∧kV : ξ ∧ ∗η = 〈ξ, η〉 · ω (B.2)

holds. The map ∗ :
∧
V →

∧
V so defined is bijective. It is linear in the case IK = IR ,

anti-linear37 in the case IK = C . ∗ is called the Hodge operator of
∧
V .

(b) If (a1, . . . , an) is a positively oriented orthonormal resp. unitary basis of V , we have for

any k ∈ {1, . . . , n− 1}
∗(a1 ∧ . . . ∧ ak) = ak+1 ∧ . . . ∧ an . (B.3)

Additionally, ∗1 = ω and ∗ω = 1 holds.

(c) ∀k ∈ {0, . . . , n} : (∗ ◦ ∗)|
∧kV = (−1)k(n−k) · idVk V .

(d) ∀k ∈ {0, . . . , n}, ξ ∈ ∧kV , η ∈ ∧V : 〈η, ∗ξ〉 = (−1)k(n−k) · 〈ξ, ∗η〉 .

(e) ∀ξ, η ∈
∧
V : 〈∗ξ, ∗η〉 = 〈ξ, η〉 . (The conjugation bar is void in the case IK = IR .) In

particular, if IK = IR holds, the Hodge operator is an orthogonal map, whereas if IK = C

holds, the Hodge operator seen as an IR-linear map is orthogonal with respect to the real

linear product Re〈·, ·〉 on
∧
V regarded as an IR-linear space.

Proof. For (a). Consider the bilinear form

β :
VkV ×

Vn−kV → IK, (ξ, ζ) 7→ 〈ξ ∧ ζ, ω〉 . (B.4)

β is non-degenerate, therefore the map β] :
Vn−kV →

VkV characterized by

∀ξ ∈
VkV , ζ ∈

Vn−kV : 〈ξ, β](ζ)〉 = β(ξ, ζ) , (B.5)

which is IR-linear for IK = IR , anti-linear for IK = C , is injective; it is in fact bijective because of dim
VkV =

dim
Vn−kV . It follows that for any given η ∈

VkV there exists one and only one ∗η ∈
Vn−kV so that β](∗η) = η

holds. For any ξ ∈
VkV we have ξ ∧ ∗η ∈

VnV = IK · ω and thus

ξ ∧ ∗η = 〈ξ ∧ ∗η, ω〉 · ω
(B.4)
= β(ξ, ∗η) · ω

(B.5)
= 〈ξ, β](∗η)〉 · ω = 〈ξ, η〉 · ω .

Because we have ∗|
VkV = (β])−1 , it follows that ∗ is a bijective and IR-linear resp. anti-linear map.

37There are two ways to define the Hodge operator on a complex linear space V , namely such that it becomes

C-linear or such that it becomes anti-linear. In both cases it is the extension of the real Hodge operator on a

maximal totally-real subspace of V . For our purposes, the anti-linear extension is preferable. For the C-linear

extension, see for example [Wei58], p. 18 or [Wel80], p. 155.
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For (b). The equations ∗1 = ω and ∗ω = 1 follow immediately from (B.2). For the proof of Equation (B.3), we

fix a positively oriented orthonormal resp. unitary basis (a1, . . . , an) of V and k ∈ {1, . . . , n−1} . Equation (B.2)

shows that (B.3) follows from the equation

∀ξ ∈
VkV : ξ ∧ ak+1 ∧ . . . ∧ an = 〈ξ, a1 ∧ . . . ∧ ak〉 · ω . (B.6)

Because both sides of Equation (B.6) are linear in ξ , it suffices to show (B.6) for ξ = aj1 ∧ . . . ∧ ajk
with

1 ≤ j1 < . . . < jk ≤ n . If any j` is greater than k , then both sides of (B.6) vanish. Therefore, only the case

ξ = a1 ∧ . . . ∧ ak remains, and then both sides of (B.6) are equal to ω .

For (c). It suffices now to show that ∗(∗ξ) = (−1)k(n−k)ξ holds for ξ = a1 ∧ . . . ∧ ak with 1 ≤

k ≤ n − 1 , where (a1, . . . , an) is any positively oriented orthonormal resp. unitary basis of V . Then

(ak+1, . . . , an, (−1)k(n−k)a1, a2, . . . , ak) is another positively oriented orthonormal resp. unitary basis of V and

we have by twofold application of (b)

∗(∗ξ) = ∗(∗(a1 ∧ . . . ∧ ar)) = ∗(ar+1 ∧ . . . ∧ an) = (−1)k(n−k)a1 ∧ . . . ∧ ak = (−1)k(n−k) · ξ .

For (d). Let ξ ∈
VkV and η ∈

V
V be given. Because the homogeneous components of η of degree unequal

to (n − k) do not contribute to either side of the equation (d), we may suppose without loss of generality that

η ∈
Vn−kV holds. Then we have

〈η, ∗ξ〉 · ω
(B.2)
= η ∧ (∗ ∗ ξ)

(c)
= η ∧ ((−1)k(n−k)ξ) = ((−1)(n−k)kη) ∧ ξ

(c)
= (∗ ∗ η) ∧ ξ

(B.1)
= (−1)(n−k)kξ ∧ (∗ ∗ η)

(B.2)
= (−1)k(n−k)〈ξ, ∗η〉 · ω

and therefore 〈η, ∗ξ〉 = (−1)k(n−k) · 〈ξ, ∗η〉 .

For (e). Because both sides of the equation in (e) are IR-linear resp. anti-linear in ξ , we may suppose without

loss of generality that ξ ∈
VkV holds for some k ∈ {0, . . . , n} . Then we have

〈∗ξ, ∗η〉
(d)
= (−1)k(n−k) · 〈η, ∗ ∗ ξ〉

(c)
= 〈η, ξ〉 = 〈ξ, η〉 .

The remaining statements of (e) are an obvious consequence. �

B.3 Example. We tabulate values of ∗ξ for the case dimV = 4 . Let (a1, a2, a3, a4) be a pos-

itively oriented orthonormal resp. unitary basis of V . Then, we have as a consequence of

Proposition B.2(b):

ξ 1 a1 a2 a3 a4

∗ξ a1 ∧ a2 ∧ a3 ∧ a4 a2 ∧ a3 ∧ a4 −a1 ∧ a3 ∧ a4 a1 ∧ a2 ∧ a4 −a1 ∧ a2 ∧ a3

ξ a1 ∧ a2 a1 ∧ a3 a1 ∧ a4 a2 ∧ a3 a2 ∧ a4 a3 ∧ a4

∗ξ a3 ∧ a4 −a2 ∧ a4 a2 ∧ a3 a1 ∧ a4 −a1 ∧ a3 a1 ∧ a2

ξ a1 ∧ a2 ∧ a3 a1 ∧ a2 ∧ a4 a1 ∧ a3 ∧ a4 a2 ∧ a3 ∧ a4 a1 ∧ a2 ∧ a3 ∧ a4

∗ξ a4 −a3 a2 −a1 1

B.3 Clifford Algebras

Let V be an n-dimensional linear space over the field IK and β : V × V → IK a symmetric

bilinear form; β gives rise to the quadratic form

q : V → IK, v 7→ 1
2β(v, v) .
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B.4 Definition. A Clifford algebra for (V, β) is an algebra C with the following properties:

(a) C contains IK ⊕ V as a linear subspace in such a way that 1 ∈ IK is the unit of C and

∀v ∈ V ⊂ C : v · v = q(v) · 1C (B.7)

holds.

(b) C has the following universal property: Any linear map f : V → A into another algebra

A which satisfies

∀v ∈ V : f(v) · f(v) = q(v) · 1A (B.8)

(we call such a map a Clifford map) can be uniquely extended to an algebra homomorphism

ϕ : C → A .

B.5 Remark. The details of the definition of a Clifford algebra vary somewhat from author to

author. In particular, Equation (B.7) is often replaced by the condition

∀v ∈ V : v · v = κ q(v) · 1C ,

where κ = 2 is common (then, v · v = β(v, v) · 1 holds for v ∈ V ), but κ ∈ {−1,−2} can also

be found. In these cases, also (B.8) has to be modified accordingly. The convention we follow

here is that of Chevalley, see [Che54], p. 39; with this choice, the least number of factors is

required in the treatment of triality in Section B.6

Also, some authors (but not Chevalley) replace the universal property of Definition B.4(b) by

the weaker requirement that V generates C as algebra (see Theorem B.7 below). In this case,

a Clifford algebra in our sense is called a universal Clifford algebra. For this use of terminology,

and for results on non-universal Clifford algebras, see for example [Por95], Chapter 15, p. 123ff.

B.6 Proposition. If C is a Clifford algebra for (V, β) , we have

(a) ∀v, w ∈ V ⊂ C : v · w + w · v = β(v, w) · 1C ,

(b) Denoting by C× the multiplicative group of invertible elements of C , we have C× ∩ V =

q−1(IK×) and ∀v ∈ q−1(IK×) : v−1 = 1
q(v) · v .

Proof. For (a). For v, w ∈ C , we have

v · w + w · v = (v + w) · (v + w) − v · v − w · w

(B.7)
= 1

2
(β(v + w, v + w) − β(v, v) − β(w,w)) · 1C = β(v, w) · 1C .

For (b). This follows simply from the equation v · v = q(v) · 1 . �

B.7 Theorem. (a) There exists a Clifford algebra for (V, β) , and if C , C ′ are two such algebras,

there exists an isomorphism of algebras Φ : C → C ′ with Φ|(IK ⊕ V ) = idIK⊕V . In the

sequel, C(V, β) always denotes a Clifford algebra for (V, β) .
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(b) If (b1, . . . , bn) is a basis of V , then C(V, β) is as algebra generated by {b1, . . . , bn} .

For ∅ 6= S ⊂ {1, . . . , n} , say S = {`1, . . . , `r} with 1 ≤ `1 < . . . < `r ≤ n , we put

bS := b`1 · · · b`r ; we also put b∅ := 1C .

Then (bS)S⊂{1,...,n} is a basis of the linear space C(V, β) ; in particular we have

dimC(V, β) = 2n .

Proof. The uniqueness of C(V, β) follows from the universal property by the canonical argument: Suppose C

and C′ are two Clifford algebras for (V, β) . By the universal property, there exist algebra homomorphisms

Φ : C → C′ and Φ′ : C′ → C with Φ|V = Φ′|V = idV .

C C′

V

A
A

A
AK

�
�
�
��

-� Φ′

Φ

Both Φ′◦Φ and idC are extensions of idV to algebra endomorphisms of C ; the universal property of C therefore

implies Φ′ ◦Φ = idC . An analogous argument shows Φ◦Φ′ = idC′ , and therefore Φ (and Φ′ = Φ−1 ) are algebra

automorphisms. Remember, we have Φ|V = idV by the construction of Φ ; also we have Φ(1C ) = 1C′ , and

therefore (because of 1C = 1C′ = 1 ∈ IK ) Φ|IK = idIK .

We only sketch the existence proof for C(V, β) here, following the exposition [Rec04] by H. Reckziegel: Consider

the tensor algebra
N
V of V , the two-sided ideal a of

N
V generated by the set { v ⊗ v − q(v) · 1 | v ∈ V } ,

the algebra C := (
N
V )/a and the canonical projection π :

N
V → C . Because we interpreted V as a linear

subspace of
N
V , we also have the linear map j := π|V : V → C (note that it is not a priori clear that j is

injective). j satisfies

∀v ∈ V : j(v)2 = q(v) · 1C . (B.9)

We also note that if (b1, . . . , bn) is a basis of V , {b1, . . . , bn} generates
N
V as algebra, and therefore

{j(b1), . . . , j(bn)} generates C as algebra.

Also, C solves the following universal problem:

Whenever another algebra A and a Clifford map f : V → A are given, there exists one and

only one algebra homomorphism ϕ : C → A with ϕ ◦ j = f .
(B.10)

For if f is as in (B.10), then the universal property of the tensor algebra
N
V shows that there exists one and

only one algebra homomorphism ψ :
N
V → A extending f and because f is a Clifford map, we see that a is

contained in the kernel of ψ , whence there exists an algebra homomorphism ϕ : C → A which satisfies ψ = ϕ◦π

and therefore f = ϕ ◦ j . The uniqueness of ϕ follows from the uniqueness of ψ .

In the sequel, we will call a pair (C, j) consisting of an algebra C and a linear map j : V → C a pre-Clifford

algebra for (V, β) , if it satisfies Equation (B.9) and solves the universal problem (B.10). By an argument analogous

to the proof of the uniqueness of the Clifford algebra, one sees that the pre-Clifford algebra for (V, β) is unique

in the following sense: If (C, j) and (C ′, j′) are two pre-Clifford algebras for (V, β) , there exists an algebra

isomorphism Φ : C → C ′ with j′ = Φ ◦ j .

For any v ∈ V , we abbreviate v̂ := j(v) ∈ C , and for any ∅ 6= S ⊂ {1, . . . , n} , say S = {`1, . . . , `r} with

1 ≤ `1 < . . . < `r ≤ n , we put

b̂S := b̂`1 · · · b̂`r ; we also put b̂∅ := 1C .
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One can show by induction on #S that for any S ⊂ {1, . . . , n} , the linear subspace C(S) := span{ b̂S′ |S′ ⊂ S }

of C in fact is a subalgebra of C . Because C is as algebra generated by {b̂1, . . . , b̂n} , it follows that C =

C({1, . . . , n}) holds, and therefore, we see that C is as a linear space spanned by (b̂S)S⊂{1,...,n} .

Then, one shows by induction on n = dimV that dimC = 2n holds. In the case n = 1 , consider the polynomial

ring IK[X] , the principal ideal b ⊂ IK[X] generated by the polynomial X2 − q(b) with a fixed b ∈ V \ {0} ,

the algebra C := IK[X]/b and the injective linear map j : V → C given by j(b) = X + b . Then (C, j) is a

pre-Clifford algebra for (V, β) and dimC = 2 holds.

For the induction step, let an n-dimensional linear space V (with n ≥ 2 ) and a bilinear form β : V × V → IK

be given. Then it can be shown that there exists an (n − 1)-dimensional subspace U ⊂ V and ε ∈ IK so that

with Ṽ := U ⊕ IK and the bilinear form

β̃ : Ṽ × Ṽ → IK, ((v1, t1), (v2, t2)) 7→ β(v1, v2) + ε t1t2 ,

there exists an isomorphism of linear spaces Ψ : V → Ṽ with β̃(Ψ(v),Ψ(w)) = β(v, w) for v, w ∈ V . One can

further show that if (CU , jU ) is a pre-Clifford algebra for (U, βU ) (with βU := β|(U ×U) ), then C := CU ⊕CU

becomes an algebra with unit 1C = (1CU , 0) via the multiplication

∀ (ξ1, η1), (ξ2, η2) ∈ C : (ξ1, η1) · (ξ2, η2) := (ξ1 ξ2 + εαU (η1) η2 , αU (ξ1) η2 + η1 ξ2) ;

here αU : CU → CU denotes the involutive algebra homomorphism uniquely determined by αU ◦ jU = −jU
(which exists because of the universal property (B.10)). And the pair (C, j) with

j : Ṽ → C, (v, t) 7→ (jU (v), t · 1CU )

is a pre-Clifford algebra for (Ṽ , β̃) , whence the pair (C, j ◦ Ψ) is a pre-Clifford algebra for (V, β) . We have

dimCU = 2n−1 by the induction hypothesis and therefore dimC = 2n . This completes the induction proof.

Because the system of generators (b̂S)S⊂{1,...,n} of the linear space C consists of 2n elements, it follows that

it is a basis of C , and as a consequence of this fact, one sees that j : V → C is injective. Therefore, we can

identify V with the subset j(V ) ⊂ C , then C becomes a Clifford algebra in the sense of Definition B.4, and the

remaining statements of the theorem hold. �

B.8 Example. Let C be a Clifford algebra of V corresponding to the zero bilinear form on V .

Then we see that v · v = 0 holds in C for any v ∈ V , and the Clifford maps corresponding to

C are exactly those linear maps f : V → A into another algebra A for which f(v)2 = 0 holds

for every v ∈ V . Therefore C is a model of the exterior algebra of V . It follows that with

Theorem B.7 we have also proved the existence and uniqueness of the exterior algebra, and the

statements made in Section B.1 about the bases and dimension of
∧
V .

B.9 Proposition. Let U ⊂ V be a linear subspace. Then the subalgebra C ′ of C(V, β) generated

by U is a Clifford algebra for (U, βU ) with βU := β|U × U .

Proof. The inclusion map U ↪→ C ′ is a Clifford map for the “abstract” Clifford algebra C(U, βU ) and consequently

can be extended to an algebra homomorphism ϕ : C(U, βU ) → C′ . If (b1, . . . , bk) is a basis of U then ϕ

maps bj1 · · · bj`
∈ C(U, βU ) onto bj1 · · · bj`

∈ C′ and is therefore surjective. Because we have dimC ′ = 2k =

dimC(U, βU ) , it follows that ϕ is an algebra isomorphism with ϕ|(IK ⊕ U) = idIK⊕U . Therefore C′ also is a

Clifford algebra for (U, βU ) . �

B.10 Proposition. (a) There is one and only one algebra homomorphism α : C(V, β) → C(V, β)

with α(v) = −v for every v ∈ V . α is an involutive algebra automorphism; it is called

the canonical involution of C(V, β) .



B.3. Clifford Algebras 263

(b) C+(V, β) := Eig(α, 1) is a subalgebra of C(V, β) called the even subalgebra of C(V, β) ;

if (b1, . . . , bn) is a basis of V , then C+(V, β) is as algebra generated by the set

{ b`1 · b`2 | 1 ≤ `1 < `2 ≤ n } .

On the other hand, C−(V, β) := Eig(α,−1) only is a linear subspace of C(V, β) called

the odd subspace of C(V, β) ; it is spanned by the set

{ bS |S ⊂ {1, . . . , n}, #S odd }

(for the notation bS see Theorem B.7). If we abbreviate C± := C±(V, β) , we have

C(V, β) = C+ ⊕ C− and

C+ · C+ ⊂ C+ , C+ · C− ⊂ C− , C− · C+ ⊂ C− and C− · C− ⊂ C+ . (B.11)

Proof. For (a). V → C(V, β), v 7→ −v is a Clifford map, therefore the existence and uniqueness of α follows

from the universal property of C(V, β) . Both α ◦ α and idC(V,β) are algebra homomorphisms which extend the

Clifford map V → C(V, β), v 7→ v , and therefore α ◦ α = idC(V,β) holds. This shows α to be an involutive

algebra automorphism.

For (b). Because α is an involutive linear map, C(V, β) = C+ ⊕C− holds, and the inclusions (B.11) follow from

the fact that α is an algebra homomorphism. In particular, we see that C+ is a subalgebra of C(V, β) . The

remaining statements now follow from Theorem B.7(b). �

B.11 Proposition. There is one and only one algebra anti-homomorphism γ : C(V, β) → C(V, β)

with γ(v) = −v for every v ∈ V . γ is an involutive algebra anti-automorphism and α◦γ = γ◦α
holds. γ is called the conjugation of C(V, β) .38

Proof. We abbreviate C := C(V, β) and denote by µ : C × C → C the multiplication map of this algebra; we

also consider the algebra Cop which as linear space is identical to C but whose multiplication is given by

µop : Cop × Cop → Cop, (ξ, η) 7→ µ(η, ξ) .

Note that 1Cop = 1C holds.

f : V → Cop, v 7→ −v is a Clifford map. By virtue of the universal property of C , there is one and only one

algebra homomorphism γ : C → Cop which extends f . If we now regard γ as a map into C , it is an algebra

anti-homomorphism. Both γ ◦ γ : C → C and idC are algebra homomorphisms which extend the Clifford map

V → C, v 7→ v . By the universal property of C , γ◦γ = idC follows; in particular, γ is an algebra automorphism.

It remains to show α ◦ γ = γ ◦ α . For this, we note that γ ◦ α ◦ γ ◦ α and idC are algebra homomorphisms

C → C which both extend the Clifford map V → C, v 7→ v . Consequently, the universal property of C shows

that γ ◦ α ◦ γ ◦ α = idC holds, and therefore we have α ◦ γ = γ ◦ α because α and γ are involutions. �

38 γ(ξ) is often also denoted by ξ . We do not use this notation here to prevent confusion with the complex

conjugate λ of a complex number λ .
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B.4 The Clifford and Spin groups, and their representations

In the situation of the previous section we now suppose that n = dimV ≥ 2 holds and that β

is non-degenerate. We consider the orthogonal group

O(V, β) := {B ∈ GL(V ) | ∀v, w ∈ V : β(Bv,Bw) = β(v, w) }
= {B ∈ GL(V ) | q ◦ B = q }

and the special orthogonal group

SO(V, β) := {B ∈ O(V, β) | det(B) = 1 }

with respect to β . Because β is non-degenerate, O(V, β) is a subgroup of GL(V ) , and SO(V, β)

is a subgroup of O(V, β) . We have det(O(V, β)) = {±1} , and therefore SO(V, β) is a subgroup

of O(V, β) of index 2 .

Proof for det(O(V, β)) = {±1} . It is clear that {±1} ⊂ det(O(V, β)) holds. Now, let A ∈ O(V, β) be given. We

fix an β-orthonormal basis (b1, . . . , bn) of V , so β(bj , bk) = εj · δjk holds with εj ∈ {±1} . Then there exist

ajk ∈ IK so that Abk =
Pn

j=1 ajk bj holds. We then have for any j, k ∈ {1, . . . , n}

εj · δjk = β(bj , bk) = β(Abj , Abk) = β(
P

ν aνjbν ,
P

µ aµkbµ) =
P

ν ενaνjaνk . (B.12)

If we now denote by M := (ajk)j,k the matrix corresponding to A with respect to the basis (b1, . . . , bn) , by MT

its transpose and put fM := (εj · ajk)j,k , we obtain by (B.12):

Q
j εj = det(MT · fM ) = det(MT ) · det(fM) = det(M) ·

Q
j εj · det(M)

and thus det(M)2 = 1 , hence det(A) = det(M) ∈ {±1} . �

In the sequel, we denote by

C(V, β)× := { ξ ∈ C(V, β) | ∃ η ∈ C(V, β) : ξη = ηξ = 1C }

the multiplicative group of invertible elements of C(V, β) ; for any ξ ∈ C(V, β)× , we denote by

ξ−1 ∈ C(V, β)× the inverse of ξ .

The group

Γ(V, β) := { g ∈ C(V, β)× | ∀v ∈ V : α(g)vg−1 ∈ V }

is called the Clifford group of C(V, β) and the map

χ : Γ(V, β) → End(V ), g 7→ (v 7→ α(g)vg−1)

is called the vector representation of Γ(V, β) .

B.12 Proposition. (a) Γ(V, β) is a subgroup of C(V, β)× and χ : Γ(V, β) → GL(V ) is a linear

representation of Γ(V, β) .

(b) For any g ∈ Γ(V, β) and t ∈ IK× , tg ∈ Γ(V, β) and χ(tg) = χ(g) holds.

α(Γ(V, β)) = Γ(V, β) , and for any g ∈ Γ(V, β) , χ(α(g)) = χ(g) holds.

γ(Γ(V, β)) = Γ(V, β) , and for any g ∈ Γ(V, β) , χ(γ(g)) = χ(g−1) holds.
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(c) We have Γ(V, β) ∩ V = q−1(IK×) and

∀w ∈ q−1(IK×), v ∈ V : χ(w)v = v − 2
β(v, w)

β(w,w)
· w .

For w ∈ q−1(IK×) , χ(w) ∈ O(V, β) holds. More precisely, χ(w) : V → V is the β-

orthogonal reflection in the hyperplane (IKw)⊥,β .

(d) IK× ⊂ Γ(V, β) and kerχ = IK× .

(e) χ(Γ(V, β)) = O(V, β) .

(f) Γ(V, β) = {w1 · · ·wr | 1 ≤ r ≤ n, w1, . . . , wr ∈ q−1(IK×) } ,39

in particular Γ(V, β) ⊂ C+(V, β) ∪ C−(V, β) ,

and for any g ∈ Γ(V, β) we have ε(g) := α(g) · g−1 ∈ {±1} .

Proof. For (a). Let us abbreviate C := C(V, β) and consider the map

eχ : C× → End(C), g 7→ (ξ 7→ α(g)ξg−1) .

Then elementary calculations show for any g1, g2 ∈ C× :

eχ(g1 · g−1
2 ) = eχ(g1) ◦ eχ(g2)

−1 and eχ(1C) = idC .

Consequently, we see that 1C ∈ Γ(V, β) holds, that g1, g2 ∈ Γ(V, β) implies g1 · g−1
2 ∈ Γ(V, β) and that

χ : Γ(V, β) → GL(V ) is a group homomorphism.

For (b). The statement on tg (with g ∈ Γ(V, β), t ∈ IK× ) is obvious and the statement on α can be straight-

forwardly checked by a direct calculation. For the statement on γ one first verifies for g ∈ Γ(V, β)

eχ(γ(g)) = γ ◦ eχ(α(g−1)) ◦ γ .

By use of (a) and the previous result on α , one sees that γ(g) ∈ Γ(V, β) and χ(γ(g)) = χ(g−1) holds.

For (c). For any w ∈ Γ(V, β) ∩ V we have q(w) 6= 0 by Proposition B.6(b). Conversely, let w ∈ q−1(IK×) be

given. Then w ∈ C(V, β)× and w−1 = 1
q(w)

· w holds by Proposition B.6(b), and therefore we have for any

v ∈ V

eχ(w)v = α(w) · v · w−1 = − 1
q(w)

· w · v · w

= − 1
q(w)

(−v · w + β(w, v)) · w

= 1
q(w)

· v · w · w − β(v,w)
q(w)

· w

= v − 2β(v,w)
β(w,w)

· w ∈ V .

This shows that w ∈ Γ(V, β) holds and that χ(w) is as given in the proposition. We have

q(χ(w)v) = 1
2
β
“
v − 2β(v,w)

β(w,w)
w , v − 2β(v,w)

β(w,w)
w
”

= q(v)

and therefore χ(w) ∈ O(V, β) . We have χ(w)w = −w and χ(w)v = v for any v ∈ V with β(w, v) = 0 . Hence,

χ(w) is the β-orthogonal reflection in the hyperplane (IKw)⊥,β .

For (d). See [LM89], Proposition I.2.4, p. 14.

For (e) and (f). (a) and (c) show that eΓ := {w1 · · ·wr | 1 ≤ r ≤ n, w1, . . . , wr ∈ q−1(IK×) } ⊂ Γ(V, β) and

χ(eΓ) ⊂ O(V, β) holds. Conversely, any given B ∈ O(V, β) can by the Theorem of Cartan/Dieudonné (see

39In particular, the elements of IK× ⊂ Γ(V, β) can be represented as such a product, namely we have t = (tw)·w

for any t ∈ IK× and w ∈ q−1({1}) . Note that the hypothesis n ≥ 2 is of importance here.
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[Art57], Theorem III.3.20, p. 129) be written in the form B = χ(w1) ◦ . . . ◦ χ(wr) = χ(w1 · · ·wr) , where r ≤ n

and w1, . . . , wr ∈ q−1({±1}) are suitably chosen. This shows that O(V, β) ⊂ χ(eΓ) holds.

We now prove Γ(V, β) ⊂ eΓ . Let g ∈ Γ(V, β) be given. By (a) and (b), we have χ(α(g) ·g−1) = idV and therefore

by (d) ε(g) = α(g) · g−1 ∈ IK× . Hence, g 6= 0 is an eigenvector of α for the eigenvalue ε(g) . Because α is

involutive, we have ε(g)2 = 1 (whence ε(g) ∈ {±1} and g ∈ C+(V, β)∪C−(V, β) follows) and therefore for any

v ∈ V :

q(χ(g)v) = (χ(g)v)2 = α(g)vg−1 · α(g)vg−1 = ε(g)2 · gvg−1 · gvg−1

= g · v2 · g−1 = q(v) · gg−1 = q(v) .

This shows χ(g) ∈ O(V, β) ⊂ χ(eΓ) (see above). Therefore there exists eg ∈ eΓ with χ(eg) = χ(g) , say eg = w1 · · ·wr

with w1, . . . , wr ∈ q−1(IK×) . By (d), we have t := g · eg−1 ∈ IK× and therefore g = teg = (tw1) ·w2 · · ·wr ∈ eΓ . �

We briefly mention the special Clifford group

Γ+(V, β) := Γ(V, β) ∩ C+(V, β) ,

which is the kernel of the surjective group homomorphism Γ(V, β) → {±1}, g 7→ α(g) · g−1 and

therefore a subgroup of index 2 of Γ(V, β) .

B.13 Remark. Some authors, for example Chevalley (see [Che54], p. 49), rather define the Clifford

group as { g ∈ C(V, β)× | ∀v ∈ V : gvg−1 ∈ V } and the vector representation by χ(g) = (v 7→
gvg−1) . In that terminology, our χ is called the twisted vector representation. However, because

we have α(ξ) = ξ for ξ ∈ C+(V, β) , the special Clifford group induced by Chevalley’s definition

is identical to our special Clifford group, and Chevalley’s vector representation coincides on the

special Clifford group with our vector representation.

Because kerχ = IK× is not a discrete subgroup of Γ(V, β) , the Clifford group is too large to

be a covering group over O(V, β) . To reduce the size of Γ(V, β) , we now introduce the norm

function40

λ : C(V, β) → C(V, β), ξ 7→ ξ · γ(ξ) .

B.14 Proposition. (a) λ(1C(V,β)) = 1C(V,β) and ∀t ∈ IK, ξ ∈ C(V, β) : λ(tξ) = t2 · λ(ξ) .

(b) ∀v, w ∈ V :
(
λ(v) = −q(v) and λ(v · w) = λ(v) · λ(w)

)
.

(c) λ(Γ(V, β)) ⊂ IK× and λ|Γ(V, β) : Γ(V, β) → IK× is a group homomorphism.

Proof. (a) and the first part of (b) are obvious. For the second part of (b), let v, w ∈ V be given. Then we have

λ(v · w) = v · w · γ(v · w) = v · w · γ(w) · γ(v) = v · λ(w)| {z }
∈IK

·γ(v) = v · γ(v) · λ(w) = λ(v) · λ(w) .

For (c). Let g ∈ Γ(V, β) be given. Then we have for every v ∈ V by Proposition B.12(a),(b)

χ(λ(g))v = χ(g · γ(g))v = χ(g)(χ(g)−1v) = v

40It should be noted that in spite of the name “norm function”, λ is not a norm in the usual sense. In particular,

for t ∈ IK it does not satisfy λ(tξ) = |t| · λ(ξ) , but rather λ(tξ) = t2 · λ(ξ) , see Proposition B.14(a).
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and therefore λ(g) ∈ kerχ = IK× , see Proposition B.12(d). An analogous calculation as in the proof of (b)

therefore shows that λ|Γ(V, β) : Γ(V, β) → IK× is a group homomorphism. �

In the sequel, we restrict our considerations to the following situation:

In the case IK = IR we suppose β to be negative definite, so that −β is

a positive definite inner product on V . (In the case IK = C we impose no

further restriction on β .)

(B.13)

Then we define the Pin group (also called the reduced Clifford group) of (V, β) by

Pin(V, β) := { g ∈ Γ(V, β) |λ(g) = 1 } (B.14)

and the Spin group (also called the special reduced Clifford group) of (V, β) by

Spin(V, β) := { g ∈ Pin(V, β) |χ(g) ∈ SO(V, β) } . (B.15)

B.15 Proposition. (a) Pin(V, β) and Spin(V, β) are subgroups of Γ(V, β) .

(b) Pin(V, β) ∩ V = q−1({−1}) .

(c) (i) Pin(V, β) = {w1 · · ·wr | 1 ≤ r ≤ n, w1, . . . , wr ∈ q−1({−1}) }

(ii) Spin(V, β) = {w1 · · ·wr | 2 ≤ r ≤ n, r even, w1, . . . , wr ∈ q−1({−1}) }
= Pin(V, β) ∩ Γ+(V, β)

(d) ker(χ|Pin(V, β)) = ker(χ|Spin(V, β)) = {±1} .

(e) χ(Pin(V, β)) = O(V, β) and χ(Spin(V, β)) = SO(V, β) .

Proof. For (a) and (b). (a) is an immediate consequence from the definitions of Pin(V, β) and Spin(V, β) because

λ : Γ(V, β) → IK× and χ : Γ(V, β) → O(V, β) are group homomorphisms. (b) follows from Proposition B.12(c)

and Proposition B.14(b).

For (c)(i). First, suppose that g = w1 · · ·wr with w1, . . . , wr ∈ q−1({−1}) and r ≤ n is given. We then

have wj ∈ Pin(V, β) by (b) and therefore g ∈ Pin(V, β) by (a). Conversely, let g ∈ Pin(V, β) be given.

Proposition B.12(f) shows that there exist 1 ≤ r ≤ n and w′
1, . . . , w

′
r ∈ q−1(IK×) so that g = w′

1 · · ·w
′
r holds.

In the case IK = IR , we have for each j ∈ {1, . . . , r} : λ(w′
j) = −q(w′

j) > 0 by (B.13); therefore both in the case

IK = IR and IK = C there exist t1, . . . , tr ∈ IK× with t2j = λ(w′
j) . We then have by Proposition B.14(b)

“Q
j tj
”2

=
Q

j t
2
j =

Q
j λ(w′

j) = λ(g) = 1

and therefore
Q

j tj ∈ {±1} . By replacing t1 with −t1 if necessary we can ensure
Q

j tj = 1 . Now put

wj := w′
j/tj for each j ; we then have −q(wj) = λ(wj) = λ(w′

j)/t
2
j = 1 and therefore wj ∈ q−1({−1}) , and also

w1 · · ·wr = (1/
Q

j tj) · w
′
1 · · ·w

′
r = g .

For (c)(ii). Let g ∈ Pin(V, β) be given; by (c)(i) there exist w1, . . . , wr ∈ q−1({−1}) with r ≤ n so that

g = w1 · · ·wr holds. Then we have

χ(g) = χ(w1) ◦ . . . ◦ χ(wr) ;

because each χ(wj) is a reflection in a hyperplane by Proposition B.12(c), we have detχ(wj) = −1 and therefore

detχ(g) = (−1)r .
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It follows that g ∈ Spin(V, β) holds if and only if r is even, which proves the first equality sign in (c)(ii). The

second equality sign now follows from (i) and the definition of Γ+(V, β) .

For (d). By Proposition B.12(d), we have ker(χ|Pin(V, β)) = ker(χ) ∩ Pin(V, β) = IK× ∩ Pin(V, β) = { t ∈

IK× | t2 = 1 } = {±1} . Because we have {±1} ⊂ Spin(V, β) by (c)(ii), ker(χ|Spin(V, β)) = {±1} follows.

For (e). We have χ(Pin(V, β)) ⊂ O(V, β) by Proposition B.12(e). For the converse direction, let B ∈ O(V, β)

be given. By Proposition B.12(e) there exists eg ∈ Γ(V, β) with χ(eg) = B . In the case IK = IR , (B.13) together

with Proposition B.12(f) shows that λ(eg) > 0 holds, and therefore both for IK = IR and IK = C there exists

t ∈ IK with t2 = λ(eg) . We then have g := 1
t
· eg ∈ Pin(V, β) and χ(g) = χ(eg) = B .

We have χ(Spin(V, β)) ⊂ SO(V, β) by definition. Conversely, let B ∈ SO(V, β) be given. By the previous

argument there exists g ∈ Pin(V, β) with χ(g) = B and the proof of (c)(ii) shows that g ∈ C+(V, β) holds.

Consequently, we have g ∈ Pin(V, β) ∩ C+(V, β) = Spin(V, β) . �

B.16 Proposition. There is one and only one structure of a Lie group on Spin(V, β) so that τ :=

χ|Spin(V, β) : Spin(V, β) → SO(V, β) becomes a two-fold Lie group covering map. Regarded in

this way, Spin(V, β) is connected. For IK = IR it is compact, and for IK = IR , n ≥ 3 it is

simply connected, so that Spin(V, β) is the universal covering Lie group of SO(V, β) .41

Proof. See [Rec04], Satz 3 and Satz 4. �

Besides the vector representation χ of Γ(V, β) , there are different linear representations ρ of

Γ(V, β) on some linear space S , which are not induced via χ by a representation of O(V, β) .

It turns out that they stem from algebra representations of C(V, β) on S ; they are called spin

representations.

To prepare the introduction of spin representations, we review some definitions and facts on

representations of algebras.

B.17 Definition. Let A be an algebra and V be a linear space.

(a) A subalgebra a of A is called a (two-sided) ideal of A if xy, yx ∈ a holds for every x ∈ a

and y ∈ A .

(b) A is called simple, if it contains no two-sided ideals besides {0} and A itself.

(c) A representation of A on V is a homomorphism of algebras ρ : A→ End(V ) . Here, we

regard End(V ) as algebra via the multiplication (X1, X2) 7→ X1 ◦X2 .

Let ρ : A→ End(V ) and ρ′ : A→ End(V ′) be representations of A .

(d) A linear subspace U ⊂ V is called ρ-invariant if ρ(x)U ⊂ U holds for every x ∈ A .

(e) ρ 6= 0 is called irreducible if {0} and V are the only ρ-invariant subspaces of V .

41One can find in [Tit67] that for IK = C , n ∈ {5} ∪ IN≥7 Spin(V, β) also is the universal covering Lie group

of SO(V, β) . (See the following locations in [Tit67]: p. 30 for n ≥ 5 odd, p. 35 for n ≥ 8 even.)
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(f) ρ and ρ′ are called similar if there is an isomorphism of linear spaces Φ : V → V ′ so

that

∀x ∈ A : ρ′(x) = Φ ◦ ρ(x) ◦ Φ−1

holds.

B.18 Proposition. Let V be a linear space.

(a) End(V ) is a simple algebra.

(b) The trivial representation idEnd(V ) of End(V ) on V is irreducible.

Proof. For (a). See [Jac64], Proposition III.2.2, p. 40. For (b). This follows from the fact that for any v1, v2 ∈

V \ {0} , there exists A ∈ End(V ) with Av1 = v2 . �

B.19 Proposition. Let A be a simple algebra. Then any two irreducible representations of A on

non-zero linear spaces are similar.

Proof. See [Jac43], Theorem 5.1, p. 93. �

B.20 Definition. An irreducible representation ρ : C(V, β) → End(S) of the Clifford algebra C(V, β)

on some linear space S 6= {0} is called a spin representation of C(V, β) . In this context, S is

called the spinor space of ρ and its elements are called spinors of ρ .

In any case there are at most two spin representations of C(V, β) which are not similar to each

other (see [LM89], Section I.5, p. 30ff.), but whether there are one or two such representations

depends on the base field IK , the dimension of V and the index of β . In the following section,

we will study one specific case.

B.5 Spin representations for complex linear spaces of even dimension

Let IK = C , V be a C-linear space of even dimension n = 2r , and β : V × V → C be a

non-degenerate symmetric bilinear form on V . It is the object of the present section to show

that there is (up to similarity) only one spin representation of the Clifford algebra C := C(V, β)

and to give an explicit description of this spin representation.

In generalization of Definition 2.19 we call v ∈ V isotropic if q(v) = 0 holds; we call a

linear subspace W ⊂ V isotropic if every v ∈ W is isotropic; in this case we already have

β|(W × W ) = 0 . All maximal isotropic subspaces of V have the same dimension ([Che54],

I.4.3, p. 17); following the terminology of Chevalley, we call their dimension the index of β .

The following relationship between the concept of isotropy defined here and the concept of

isotropy in a CQ-space (see Section 2.3) should be noted:
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B.21 Lemma. There exists a complex inner product 〈·, ·〉 on V and a conjugation A on (V, 〈·, ·〉)
so that a linear subspace W ⊂ V is isotropic in the sense of the previous definition if and only

it is (S1 · A)-isotropic in the sense of Definition 2.19. Moreover, A can be chosen so that β

and 〈·, ·〉 coincide on V (A) × V (A) .

Proof. Let (b1, . . . , bn) be an adapted basis for β (see Proposition 1.4). Then the statement of the lemma is

fulfilled with the inner product 〈·, ·〉 characterized by (b1, . . . , bn) being a unitary basis and the anti-linear map

A : V → V characterized by

∀u, v ∈ V : β(u, v) = 〈u, Av〉 ,

which is a conjugation on (V, 〈·, ·〉) by Proposition 1.7. �

B.22 Proposition. In the present situation, β is necessarily of index r .

Proof. We regard V as a CQ-space in the way described in Lemma B.21. Then Corollary 2.22 shows that there

exist isotropic subspaces of V of any complex dimension ≤ r , but none of dimension > r . Hence the index of

β is r . �

In the present situation the structure of the bilinear form β is known completely, as is shown

by the following proposition:

B.23 Proposition. For every r-dimensional isotropic subspace W of V , there exists an r-

dimensional isotropic subspace W ′ of V so that W ⊕ W ′ = V holds. Moreover, for every

such subspace W ′ and every basis (w1, . . . , wr) of W there exists a basis (w′
1, . . . , w

′
r) of W ′

so that

∀j, ` ∈ {1, . . . , r} : β(wj , w
′
`) = δj` (B.16)

holds, and in this situation, we have the following analogue to the Fourier representation:

∀w ∈W : w =
r∑

j=1

β(w,w′
j)wj and ∀w′ ∈W ′ : w′ =

r∑

j=1

β(w′, wj)w
′
j . (B.17)

Proof. For the existence of W ′ and (w′
1, . . . , w

′
r) , see [Che54], I.3.2, p. 13. (When reading that proof, note that

Chevalley’s notions of totally isotropic subspaces and of singular subspaces coincide in fields of characteristic 6= 2

(see [Che54], I.2.1, p. 11), and they correspond to our notion of isotropic subspaces.) Equations (B.17) are an

obvious consequence of the isotropy of W and W ′ , and Equation (B.16). �

B.24 Proposition. Let W be an isotropic subspace of V . Then the subalgebra CW of C generated

by W is a model of the exterior algebra over W .

Proof. We have β|(W ×W ) = 0 , and hence CW is a Clifford algebra for W equipped with the zero bilinear

form by Proposition B.9. Therefore Example B.8 shows that CW is a model of the exterior algebra over W . �

We now fix an r-dimensional isotropic subspace W of V – the existence of such a subspace

follows from Proposition B.22 – and choose via Proposition B.23 another r-dimensional isotropic

subspace W ′ of V which is complementary to W . Moreover, we fix a “unit volume” ω ∈∧rW \ {0} . By Proposition B.24, the subalgebra of C generated by W is a model of the
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exterior algebra of W ; for this reason we denote this subalgebra by
∧
W in the sequel and

define
∧kW for k ∈ ZZ as in Section B.1. In particular we have w · w̃ = −w̃ · w for any

w, w̃ ∈ W ; to remind of this rule, we will denote the product w · w̃ also by w ∧ w̃ . We apply

analogous conventions to the subalgebra
∧
W ′ of C generated by W ′ . It should be noted that

the elements of W do not generally anti-commute with the elements of W ′ , rather we have the

equation

∀w ∈W, w′ ∈W ′ : w · w′ = β(w,w′) − w′ · w .

The following proposition gives a first example how the fixation of W and W ′ gives insight into

the structure of the Clifford algebra C(V, β) . It provides two methods to construct elements of

Γ(V, β) explicitly.

B.25 Proposition. (a) For every pair (w,w′) ∈ W × W ′ , we have q(w + w′) = β(w,w′) . If

β(w,w′) 6= 0 holds, we have w + w′ ∈ Γ(V, β) and (w + w′)−1 = 1
β(w,w′) (w + w′) .

(b) For any w, w̃ ∈W we have (1 +w · w̃), (1−w · w̃) ∈ Γ(V, β) , and these two elements are

inverse to each other.

Proof. For (a). We have q(w+w′) = 1
2
β(w+w′, w+w′) = 1

2
(β(w,w)+β(w,w′)+β(w′, w)+β(w′, w′)) = β(w,w′) .

In the case β(w, w′) 6= 0 , this equation implies w + w′ ∈ Γ(V, β) by Proposition B.12(c). The statement on

(w + w′)−1 follows from Proposition B.6(b).

For (b). We have

(1 + w · ew) · (1 − w · ew) = 1 − w · ew · w| {z }
=−w· ew

· ew = 1 +w · w| {z }
=0

· ew · ew = 1

and therefore (1 + w · ew) and (1 − w · ew) are invertible and inverse to each other. Moreover, for any v ∈ V we

have

w · ew · v · w · ew = w · ew · (β(v, w) − w · v) · ew = β(v, w)w · ew · ew| {z }
=0

− w · ew · w| {z }
=−w·w· ew=0

·v · ew = 0 (B.18)

and therefore g := (1 + w · ew) satisfies

α(g) · v · g−1 = (1 + w ew) · v · (1 − w ew)

= v − vw ew +w ewv −w ewvw ew (B.18)
= v − vw ew + w ewv

= v − (β(v, w) −wv) ew + w(β( ew, v) − v ew) = v − β(v, w) ew + β( ew, v)w ∈ V ,

whence g ∈ Γ(V, β) follows. Then we also have (1 − w · ew) = g−1 ∈ Γ(V, β) . �

A linear map ν :
∧
W → ∧

W is called an anti-derivation of degree −1 , if ν(
∧kW ) ⊂ ∧k−1W

and

∀ξ ∈ ∧kW, η ∈ ∧W : ν(ξ ∧ η) = ν(ξ) ∧ η + (−1)k ξ ∧ ν(η) (B.19)

holds for k ∈ {0, . . . , r} . If ν is an anti-derivation of degree −1 , then we have ν ◦ ν = 0 , as

an induction argument based on Equation (B.19) shows.

If a linear form δ ∈W ∗ is given, there is one and only one anti-derivation νδ :
∧
W → ∧

W of

degree −1 which extends δ . νδ is the linear map characterized by

∀k ∈ IN, w1, . . . , wk ∈W : νδ(w1 ∧ . . .∧wk) =

k∑

i=1

(−1)i+1 · δ(wi) ·w1 ∧ . . . ŵi . . .∧wk , (B.20)
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where ŵi denotes the omission of wi from the product. Moreover, every anti-derivation ν of

degree −1 on
∧
W is obtained in this way: we have ν = νδ with δ = ν|W : W → IK . In this

way, the space of anti-derivations on
∧
W is isomorphic to W ∗ .

We are now ready to describe the spin representation of C :

B.26 Theorem. Let us put S :=
∧
W and consider the linear map f : V → End(S) given by

∀w ∈W : f(w) = (ξ 7→ w ∧ ξ) and ∀w′ ∈W ′ : f(w′) = νβ(·,w′) ,

where νβ(·,w′) is defined as in Equation (B.20).

Then f is a Clifford map and the algebra homomorphism ρ : C(V, β) → End(S) uniquely

determined by ρ|V = f is in fact an algebra isomorphism. ρ is a spin representation of

C(V, β) , and any other spin representation of C(V, β) is similar to ρ .

For the proof of this theorem, we introduce the following notation, which will also be used on

several other occasions: Whenever (w1, . . . , wr) is a basis of W and ∅ 6= N ⊂ {1, . . . , r} holds,

say N = {j1, . . . , jk} with 1 ≤ j1 < . . . < jk ≤ r , we put

wN := wj1 ∧ . . . ∧ wjk ; we also put w∅ := 1V
W . (B.21)

Then (wN )N⊂{1,...,r} is a basis of
∧
W , see Section B.1.

Proof of Theorem B.26. To prove that f is a Clifford map, one has to show for any w ∈ W , w′ ∈ W ′ :

f(w) ◦ f(w) = 0 , f(w′) ◦ f(w′) = 0 (B.22)

and

f(w) ◦ f(w′) + f(w′) ◦ f(w) = β(w, w′) · idS . (B.23)

The first equation of (B.22) is obvious and the second equation of (B.22) follows from the fact that ν ◦ ν = 0

holds for any anti-derivation ν . For (B.23): Let ξ ∈ S be given. Using the fact that f(w′) is an anti-derivation

of degree −1 on S , we obtain

`
f(w) ◦ f(w′) + f(w′) ◦ f(w)

´
ξ = w ∧ (f(w′)ξ) + f(w′)(w ∧ ξ)

(B.19)
= w ∧ (f(w′)ξ) + (f(w′)w) ∧ ξ −w ∧ (f(w′)ξ) = β(w′, w) · ξ

and therefore Equation (B.23). This shows that f is a Clifford map and therefore the existence and uniqueness

of the algebra homomorphism ρ .

We next show that ρ is in fact an isomorphism of algebras. For this purpose, we fix a basis (w1, . . . , wr) of W

and use the notation wN of (B.21) with respect to this basis. Below, we will show

∀N,N ′ ⊂ {1, . . . , r} ∃ ξ ∈ C(V, β) ∀M ⊂ {1, . . . , r} : ρ(ξ)wM =

(
wN′ if M = N

0 if M 6= N
. (B.24)

Because (wN )N⊂{1,...,r} is a basis of S , (B.24) shows that when N and N ′ run through all subsets of {1, . . . , r} ,

the corresponding endomorphisms ρ(ξ) run through a basis of End(S) . Therefore ρ : C(V, β) → End(S) is

surjective. Because we have dim End(S) = (2r)2 = 2n = dimC(V, β) , ρ is an isomorphism of algebras.

For the proof of (B.24): By Proposition B.23 there exists a basis (w′
1, . . . , w

′
r) of W ′ so that β(wk, w

′
`) = δk`

holds for any k, ` . Now let N,N ′ ⊂ {1, . . . , r} be given, say N = {j1, . . . , jk} with 1 ≤ j1 < . . . < jk ≤ r and

analogously N ′ = {j′1, . . . , j
′
k′} with 1 ≤ j′1 < . . . < j′k′ ≤ r . ( k = 0 or k′ = 0 is permitted, then N resp. N ′
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is empty.) We also consider 1 ≤ bj1 < . . . < bjr−k ≤ r so that {bj1, . . . ,bjr−k} = {1, . . . , r} \N holds. Then we put

ξ := ξ3 ξ2 ξ1 ∈ C(V, β) with

ξ1 := w′
jk

· · ·w′
j1 , ξ2 := (w′

bjr−k
· wbjr−k

) · · · (w′
bj1

· wbj1
) and ξ3 := wj′1

· · ·wj′
k′

.

Now let M ⊂ {1, . . . , r} be given. Then we have

ρ(ξ1)wM =

8
>><
>>:

1 if N = M

±wM\N if N ( M

0 if N 6⊂M

,

therefore

ρ(ξ2 ξ1)wM =

(
1 if N = M

0 if N 6= M

and hence

ρ(ξ)wM = ρ(ξ3 ξ2 ξ1)wM =

(
wN′ if N = M

0 if N 6= M
.

Thus, Equation (B.24) is shown with this choice of ξ .

The representation ρ is irreducible because ρ(C) = End(S) acts irreducibly on S by Proposition B.18(b), and

therefore ρ is a spin representation. Because C is via ρ isomorphic to the algebra End(S) , it is simple by

Proposition B.18(a), and therefore Proposition B.19 shows that any other spin representation of C is similar to

ρ . �

As Theorem B.26 shows, any two spin representations of C are similar. From here on, we

therefore denote by ρ : C → End(S) always the spin representation described in Theorem B.26,

and by S =
∧
W the corresponding spinor space.

We note some elementary properties of ρ :

B.27 Proposition. (a) Γ(V, β) × S → S, (g, s) 7→ ρ(g)s is a linear Lie group action.

(b) (i) For any k ∈ IN and w ∈ W we have ρ(w)
∧kW ⊂ ∧k+1W , also for w′ ∈ W ′ we

have ρ(w′)
∧kW ⊂ ∧k−1W .

(ii) For any v ∈ V , ρ(v) maps
∧evenW into

∧oddW and conversely.

(iii) For any ξ ∈ C+(V, β) , ρ(ξ) leaves
∧evenW and

∧oddW invariant.

(c) For any s ∈ S , we have ρ(s)1S = s ; for any ξ ∈ ∧W ′ , we have ρ(ξ)1S = 0 .

Proof. (a) is obvious. For (b). For (i), we have for any k ∈ IN and any w ∈W , w′ ∈W ′ and s ∈
VkW

ρ(w)s = w ∧ s ∈
Vk+1W and ρ(w′)s = νβ(·,w′)s ∈

Vk−1W .

For (ii), let v ∈ V be given, say v = w + w′ with w ∈ W and w′ ∈ W ′ . Then we have for any s ∈
VkW by

(b)(i)

ρ(v)s = ρ(w)s+ ρ(w′)s ∈
Vk+1W ⊕

Vk−1W ,

whence (ii) follows. As a consequence, we see that for any ` ∈ IN , v1, . . . v2` ∈ V and η := v1 · · · v2` ∈ C+(V, β) ,

ρ(η) leaves
VevenW and

VoddW invariant. Because C+(V, β) is spanned by the elements of the form of η , (iii)

follows.

For (c). Because of the linearity of ρ it suffices to prove the first part of (c) for the case where s = w1∧. . .∧wk ∈ S

is a decomposable spinor, and then we have

ρ(s)1S = ρ(w1 · · ·wk)1S = ρ(w1 · · ·wk−1)wk = . . . = ρ(1)(w1 ∧ . . . ∧ wk) = s .

The second part of (c) follows from (b)(i). �
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The restriction of ρ to C+(V, β) is no longer irreducible, because it leaves the spaces S+ :=∧evenW and S− :=
∧oddW invariant by Proposition B.27(b)(iii). S+ resp. S− is called the

space of even resp. odd half-spinors. It can be shown that the representations ρ̃± : C+(V, β) →
End(S±), g 7→ ρ(g)|S± are irreducible, and that ρ± := ρ̃±|Spin(V, β) is an irreducible linear

Lie group action of the Lie group Spin(V, β) on S± (see [LM89], Proposition I.5.15, p. 36).

B.28 Proposition. There exists no group representation σ± : SO(V, β) → GL(S±) so that ρ± =

σ± ◦ (χ|Spin(V, β)) holds. In particular, neither ρ+ nor ρ− is similar to χ|Spin(V, β) .

Proof. If such a representation σ± existed, we would have ker(χ|Spin(V, β)) ⊂ ker(ρ±) . But we have

ker(χ|Spin(V, β)) = {±1} by Proposition B.15(d), whereas ρ(−1) = −idS and therefore −1 6∈ ker(ρ±) holds. �

B.29 Proposition. dimS = 2r and dimS+ = dimS− = 2r−1 .

Proof. We note that dim
VkW =

`
r
k

´
holds. If we set x = 1 in the binomial equation (1+x)r =

Pr
k=0

`
r
k

´
xk , we

obtain 2r =
Pr

k=0 dim
VkW = dimS . If we set x = −1 in the binomial equation, we obtain 0 =

Pr
k=0(−1)k

`
r
k

´
,

and hence dimS+ = dimS− . �

As we saw in Section B.4, the action of Spin(V, β) on V via the vector representation χ leaves

the bilinear form β invariant. We now introduce a bilinear form βS on S which is invariant

under the action of Spin(V, β) on S via the spin representation ρ . For the study of the spinor

space S , βS will play a similar role as β does for the study of V .

For this, we consider the involutive algebra anti-automorphism κ := α ◦ γ = γ ◦ α : C → C ,

where α is the canonical involution of C (see Proposition B.10) and γ is the conjugation of

C (see Proposition B.11). κ is called the main anti-automorphism of C . We have κ|V = idV
and therefore

∀v1, . . . , vk ∈ V : κ(v1 · · · vk) = vk · · · v1 ; (B.25)

as a consequence of this equation we see that κ leaves
∧
W = S and

∧
W ′ invariant. It also

follows that we have

∀k ∈ {0, . . . , r}, ξ ∈ ∧kW ∪∧kW ′ : κ(ξ) = (−1)k(k−1)/2 ξ . (B.26)

B.30 Proposition. Via the fixed “unit volume” ω ∈ ∧rW \ {0} we define a linear form ϕ : S → C

by

ϕ(ω) = 1 and ∀k < r : ϕ|
∧kW = 0 .

(a) The map

βS : S × S → C, (s1, s2) 7→ ϕ(κ(s1) ∧ s2)

is bilinear and non-degenerate.

(b) For g ∈ Γ(V, β) , we put ε(g) := α(g) g−1 ∈ {±1} (see Proposition B.12(f)). For s1, s2 ∈
S and v ∈ V , we then have

(i) βS(ρ(v)s1, ρ(v)s2) = q(v) · βS(s1, s2)

(ii) βS(ρ(g)s1, ρ(g)s2) = ε(g) · λ(g) · βS(s1, s2)
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(iii) βS(ρ(g)s1, ρ(g)s2) = βS(s1, s2) for g ∈ Spin(V, β)

(iv) βS(ρ(v)s1, s2) = βS(s1, ρ(v)s2)

(v) βS(s2, s1) = (−1)r(r−1)/2 · βS(s1, s2)

(c) For s1 ∈ ∧k1W and s2 ∈ ∧k2W , we have βS(s1, s2) = 0 whenever k1 + k2 6= r .

Consequently:

If r is even, we have βS |(S+ × S−) = 0 and βS |(S− × S+) = 0 ;

if r is odd, we have βS |(S+ × S+) = 0 and βS |(S− × S−) = 0 .

(d) Suppose that W is endowed with the structure of an oriented unitary space so that ω is

the positive unit r-vector of W (see Section B.2). Then we have

∀s1 ∈ ∧kW, s2 ∈ ∧r−kW : βS(s1, s2) = (−1)rk · (−1)k(k+1)/2 · 〈s1, ∗s2〉 .

Here, ∗ denotes the Hodge operator of
∧
W , see Proposition B.2.

Proof. For (a). It is obvious that βS is bilinear. For the proof of the non-degeneracy of βS , we let s ∈ S be

given so that β(s, ·) = 0 holds. We fix a basis (w1, . . . , wr) of W and use the notation wN of (B.21) with

respect to this basis. Because (wN )N⊂{1,...,r} is a basis of S , there exist numbers cN ∈ C so that s =
P
cN wN

holds. Let N ⊂ {1, . . . , r} be given, then we have

0 = βS(s, w{1,...,r}\N ) = cN βS(wN , w{1,...,r}\N ) = ±cN ϕ(w{1,...,r})| {z }
6=0

and therefore cN = 0 . Thus we have shown s = 0 .

For (b). (See also [Che54], p. 77f.) There exists a basis (w1, . . . , wr) of W so that ω = w1 ∧ . . .∧wr holds, and

a basis (w′
1, . . . , w

′
r) of W ′ so that

∀j, k ≤ r : β(wj , w
′
k) = δjk (B.27)

holds (see Proposition B.23). By Proposition B.6(a) we have w ·w′ = β(w,w′)−w′ ·w for any w ∈W, w′ ∈W ′

and therefore

∀j, k ≤ r : wj · w
′
k = δjk − w′

k · wj . (B.28)

We put ω′ := w′
1 ∧ . . . ∧ w

′
r ∈

VrW ′ and note that we have by Equation (B.26)

κ(ω′) = εω′ with ε := (−1)r(r−1)/2 . (B.29)

The most important objects of the present situation can be expressed using the multiplication of the Clifford

algebra C and its main anti-automorphism κ , as the following equations show.

∀s ∈ S : ϕ(s) · ω′ = εω′ · s · ω′ (B.30)

∀s1, s2 ∈ S : βS(s1, s2) · ω
′ = εω′ · κ(s1) · s2 · ω′ (B.31)

∀v ∈ V, s ∈ S : (ρ(v)s) · ω′ = v · s · ω′ (B.32)

∀v ∈ V, s ∈ S : ω′ · κ(ρ(v)s) = ω′ · κ(s) · v . (B.33)

For (B.30): Because both sides of Equation (B.30) are linear in s , it suffices to prove that equation for s = wN

with N ⊂ {1, . . . , r} . In the case k < r there exists j ∈ {1, . . . , r} \ N , and (B.28) shows that we have

w′
j · s = (−1)ks · w′

j . From this fact we obtain

ω′ · s · ω′ = (−1)(r−j)+k+(j−1) · (w′
1 ∧ . . . ∧ w′

j−1 ∧ w′
j+1 ∧ . . . ∧ w′

r) · s · (w
′
1 ∧ . . . ∧ w′

j−1 ∧ w′
j ∧ w

′
j| {z }

=0

∧w′
j+1 ∧ . . . ∧ w

′
r)

= 0 = εϕ(s) · ω′ .
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On the other hand, in the case k = r we have s = ω and therefore ϕ(s) = 1 . Hence we have to show the equality

ω′ · ω · ω′ = (−1)r(r−1)/2 · ω′ ,

which is verified by a direct calculation using Equation (B.28).

For (B.31): For given s1, s2 ∈ S we have by Equation (B.30): βS(s1, s2) ·ω
′ = ϕ(κ(s1) ·s2) ·ω

′ = εω′ ·κ(s1) ·s2 ·ω
′ .

For (B.32): Both sides of Equation (B.32) are linear in v , therefore it suffices to show that equation for the

elements of the basis (w1, . . . , wr, w
′
1, . . . , w

′
r) of V . If we have v = wj ∈ W , we have for any s ∈ S by the

definition of ρ : (ρ(wk)s) · ω′ = (wk · s) · ω′ . Let us now consider the case v = w′
j . Because both sides of (B.32)

are also linear in s , we may restrict our considerations to s = wN with N ⊂ {1, . . . , r} . We further distinguish

the cases j ∈ N and j 6∈ N . In the case j ∈ N we put ` := #{ j′ ∈ N | j′ < ` } , then we have

v · s · ω′ = w′
j · wN · ω′ = (−1)` w′

j · wj · wN\{j} · ω′

(B.28)
= (−1)` (1 − wj · w

′
j) · wN\{j} · ω′

= (−1)`wN\{j} · ω′ − (−1)`+#N−1 wj · wN\{j} · w′
j · ω

′
| {z }

=0

= ρ(w′
j)s · ω

′ .

On the other hand, if j 6∈ N holds, we have

v · s · ω′ = w′
j · wN · ω′ (B.28)

= (−1)#N wN · w′
j · ω

′ = 0 = νβ(·,w′

j
)wN · ω′ = ρ(v)s · ω′ .

For (B.33): We first note that we have for any s ∈ S

ω′ · κ(s)
(B.29)

= ε κ(ω′) · κ(s) = ε κ(s · ω′) . (B.34)

Now we obtain

ω′ · κ(ρ(v)s)
(B.34)

= ε κ(ρ(v)s · ω′)
(B.32)

= ε κ(v · s · ω′) = ε κ(ω′)| {z }
(B.29)

= ω′

·κ(s) · κ(v)|{z}
=v

= ω′ · κ(s) · v .

For (b)(i). We have

βS(ρ(v)s1, ρ(v)s2) · ω
′ (B.31)

= ε ω′ · κ(ρ(v)s1) · ρ(v)s2 · ω
′

(B.32)

(B.33)
= εω′ · κ(s1) · v · v|{z}

=q(v)·1C

·s2 · ω′

= q(v) εω′ · κ(s1) · s2 · ω′ (B.31)
= q(v) βS(s1, s2) · ω

′ ,

whence (b)(i) follows.

For (b)(ii). Let g ∈ Γ(V, β) be given. By Proposition B.12(f), there exist v1, . . . , vk ∈ V with g = v1 · · · vk . By

(b)(i) and Proposition B.14(b), we have

βS(ρ(g)s1, ρ(g)s2) = βS(ρ(v1) · · · ρ(vk)s1, ρ(v1) · · · ρ(vk)s2)

= q(v1) · · · q(vk) · βS(s1, s2) = (−λ(v1)) · · · (−λ(vk)) · βS(s1, s2)

= ε(g) · λ(g) · βS(s1, s2) .

For (b)(iii). This is an immediate consequence of (b)(ii) and Proposition B.15(c)(ii).

For (b)(iv). We have

βS(ρ(v)s1, s2)·ω
′ (B.31)

= ε ω′·κ(ρ(v)s1)·s2·ω
′ (B.33)

= εω′·κ(s1)·v·s2·ω
′ (B.32)

= εω′·κ(s1)·ρ(v)s2·ω
′ (B.31)

= βS(s1, ρ(v)s2)·ω
′ .

For (b)(v). We have

βS(s2, s1) · ω
′ (B.31)

= ε ω′ · κ(s2) · s1 · ω
′ (B.29)

= κ(ω′) · κ(s2) · κ(κ(s1)) · κ(κ(ω
′)) = κ(κ(ω′) · κ(s1) · s2 · ω′)

(B.29)
= κ(ε ω′ · κ(s1) · s2 · ω

′)
(B.31)

= κ(βS(s1, s2) · ω
′) = βS(s1, s2) · κ(ω

′)
(B.29)

= ε βS(s1, s2) · ω
′ .
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For (c). This is a direct consequence of the definition of βS .

For (d). Let s1 ∈
VkW and s2 ∈

Vr−kW be given. We have

κ(s1) = (−1)k(k−1)/2 · s1 , (B.35)

and from Proposition B.2(c) we see that

s2 = (−1)(r−k)k · (∗ ∗ s2) (B.36)

holds. Using these equations, we obtain

βS(s1, s2) = ϕ(κ(s1) ∧ s2)
(B.35)

= (−1)k(k−1)/2 · ϕ(s1 ∧ s2)

(B.36)
= (−1)k(k−1)/2 · (−1)(r−k)k · ϕ(s1 ∧ (∗ ∗ s2))

= (−1)k(k+1)/2 · (−1)rk · ϕ(〈s1, ∗s2〉 · ω)

= (−1)k(k+1)/2 · (−1)rk · 〈s1, ∗s2〉 . �

B.6 The Principle of Triality

Triality is a specific phenomenon occurring in the case dimV = 8 which exhibits a relationship

between the vector representation χ|Spin(V, β) on V and the spin representations ρ± on the

spaces S± of even resp. odd half-spinors. The present description of triality closely follows the

approach of [Che54], Chapter IV.42

We now suppose in the situation of Section B.5 that n = dimV = 8 and hence r = 4 holds.

We consider the non-degenerate bilinear form βS : S × S → C of Proposition B.30, which here

is symmetric by Proposition B.30(b)(v). It therefore induces a quadratic form

qS : S → C, s 7→ 1
2βS(s, s) .

We put β+ := βS |(S+ × S+) and β− := βS |(S− × S−) ; these symmetric bilinear forms are still

non-degenerate because S+ and S− are βS-orthogonal to each other by Proposition B.30(c).

Their corresponding quadratic forms are q+ := qS|S+ resp. q− := qS|S− .

Proposition B.29 shows that

dimS+ = dimS− = 8 = dimV

holds. As we will show in the present section, the representations χ , ρ+ and ρ− on the

spaces V , S+ resp. S− are in fact “intertwined” in the following way: There exists a Lie

group automorphism ϑ : Spin(V, β) → Spin(V, β) with ϑ3 = idSpin(V,β) and C-linear isometries

TV+ : (V, β) → (S+, β+) , T+− : (S+, β+) → (S−, β−) and T−V : (S−, β−) → (V, β) with

T−V ◦ T+− ◦ TV+ = idV , so that the following diagram commutes:

Spin(V, β) × V
ϑ×TV +

//

χ

��

Spin(V, β) × S+
ϑ×T+−

//

ρ+

��

Spin(V, β) × S−
ϑ×T−V

//

ρ−
��

Spin(V, β) × V

χ

��
V

TV +

// S+
T+−

// S−
T−V

// V .

(B.37)

42However, when applying information from [Che54] it should be noted that [Che54] uses the “non-twisted”

vector representation, see Remark B.13.
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Here, we denote by χ and ρ± also the maps

χ : Spin(V, β) × V → V, (g, v) 7→ χ(g)v resp. ρ± : Spin(V, β) × S± → S±, (g, s) 7→ ρ±(g)s .

The fact of the existence of maps ϑ and T... so that Diagram (B.37) commutes is called the

“principle of triality”. This name reflects the relationship between the three representations χ ,

ρ+ and ρ− described by the diagram.

For the construction of the isomorphisms, we consider the “composite” 24-dimensional linear

space T := V ⊕ S+ ⊕ S− . We will define a composition map � : T × T → T so that (T, �)
becomes a non-associative algebra. It will then turn out that the maps T... of Diagram (B.37)

can be defined as restrictions of an automorphism T of the algebra (T, �) . In this regard, the

algebra (T, �) carries the information of triality.

First, we note that the Clifford group Γ(V, β) acts on T via the “composite” linear represen-

tation µ : Γ(V, β) → GL(T) given by

∀g ∈ Γ(V, β), v ∈ V, s+ ∈ S+, s− ∈ S− : µ(g)(v+s++s−) := χ(g)v+ρ(g)s++ρ(g)s− . (B.38)

µ is injective because we have kerµ = kerχ ∩ ker(ρ|Γ(V, β)) = {1} .

Let βT : T × T → C be the “composite” bilinear form characterized by

βT(v + s+ + s−, v
′ + s′+ + s′−) = β(v, v′) + β+(s+, s

′
+) + β−(s−, s

′
−)

for every v, v′ ∈ V, s+, s
′
+ ∈ S+ and s−, s′− ∈ S− . Because β , β+ and β− are non-degenerate

and symmetric, so is βT . With respect to βT , the spaces V , S+ and S− are pairwise ortho-

gonal to each other.

The map F : T → C defined by

∀v ∈ V, s+ ∈ S+, s− ∈ S− : F (v + s+ + s−) = β−(ρ(v)s+, s−) = β+(s+, ρ(v)s−)

(for the second equality sign see Proposition B.30(b)(iv)) is a cubic form on T , meaning that

F (tX) = t3 F (X) holds for every X ∈ T and t ∈ C . Therefore there exists one and only one

symmetric, trilinear form43 γ : T × T × T → C so that

∀X ∈ T : 1
6 · γ(X,X,X) = F (X)

holds; γ can be explicitly described in the following way: Let X1, X2, X3 ∈ T be given, say

Xk = vk + s+,k + s−,k with vk ∈ V and s±,k ∈ S± for k ∈ {1, 2, 3} . Then we have

γ(X1, X2, X3) =
∑

σ∈S3

F (vσ(1) + s+,σ(2) + s−,σ(3)) . (B.39)

We now define the composition map � : T × T → T . Let X,Y ∈ T be given. Then γ(X,Y, ·)
is a linear form on T . Because βT is non-degenerate, there exists one and only one element

X � Y ∈ T so that

γ(X,Y, ·) = βT(X � Y, ·) (B.40)

43This trilinear form should not be confused with the conjugation of the Clifford algebra C(V, β) , which we

previously also denoted by γ .
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holds. The composition map � so defined turns T into a C-algebra, which is commutative

(because γ is in particular symmetric in its first two entries) but not associative and which does

not have a unit element (see Remark B.32 below). We call (T, �) the triality algebra.

B.31 Proposition. (a) (i) ∀v ∈ V, s+ ∈ S+, s− ∈ S− : γ(v, s+, s−) = F (v + s+ + s−) .

(ii) We have γ(X,Y,Z) = 0 in either of the following two situations:

(1) all of X,Y,Z are from one and the same of the spaces V ⊕ S+ , V ⊕ S− or

S+ ⊕ S− ,

(2) two of X,Y,Z are from one and the same of the spaces V , S+ or S− .

(b) Let v, v′ ∈ V and s±, s′± ∈ S± be given. Then the composition � is described by the

following composition table:

� v′ s′+ s′−

v 0 ρ(v)s′+ ρ(v)s′−

s+ 0 ( v 7→ β−(ρ(v)s+, s
′
−) )]

s− 0

Here, for every α ∈ V ∗ let α] ∈ V be the vector uniquely characterized by β(α], ·) = α .

Note that � is commutative, and therefore completely specified by the above table. In

particular, we have the following relations:

V � S+ ⊂ S− , V � S− ⊂ S+ and S+ � S− ⊂ V . (B.41)

(c) For any v, v1, v2 ∈ V , s, s1, s2 ∈ S we have

(i) v � (v � s) = q(v) · s
(ii) βS(v � s1, v � s2) = q(v) · βS(s1, s2)

(iii) βS(v1 � s, v2 � s) = qS(s) · β(v1, v2) .

(d) If σ : T → T is a linear map which leaves both the bilinear form βT and the cubic form

F invariant, then σ is an algebra automorphism of (T, �) .

(e) Let g ∈ Γ(V, β) be given and put ε(g) := α(g) g−1 ∈ {±1} (see Proposition B.12(f)). If

λ(g) = ε(g) holds, then ε(g) · µ(g) is an automorphism of (T, �) which leaves βT and

F invariant. It leaves V invariant; for ε(g) = 1 it also leaves S+ and S− invariant,

whereas for ε(g) = −1 it exchanges S+ and S− .

As a consequence of Proposition B.31(e), we see that µ(g) leaves the symmetric bilinear form

βT invariant for every g ∈ Γ(V, β) . Consequently, µ is in fact a group representation µ :

Γ(V, β) → SO(T, βT) .

Proof of Proposition B.31. For (a). Notice Equation (B.39) and the fact that

∀X ∈ (V ⊕ S+) ∪ (S+ ⊕ S−) ∪ (S− ⊕ V ) : F (X) = 0 (B.42)

holds.
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For (b). First, we show the correctness of the three zeros on the main diagonal of the table. Let v, v′ ∈ V be

given. Then we have for every X ∈ T : βT(v � v′, X) = γ(v, v′, X) = 0 by (a)(ii)(2), and therefore v � v′ = 0

because of the non-degeneracy of βT . Analogously, one shows s+ � s′+ = 0 for any s+, s
′
+ ∈ S+ and s− � s′− = 0

for any s−, s
′
− ∈ S− .

Now, let v ∈ V and s′+ ∈ S+ be given. Then we have for every X ∈ V ⊕S+ ⊂ T : βT(v�s+, X) = γ(v, s+, X) = 0

by (a)(ii)(1), and therefore v � s+ lies in the βT-ortho-complement of V ⊕ S+ in T , i.e. in S− . Now, we have

for any s− ∈ S−

β−(v � s′+, s−) = βT(v � s′+, s−) = γ(v, s′+, s−)
(a)(i)
= F (v + s′+ + s−) = β−(ρ(v)s′+, s−) .

By the non-degeneracy of β− , v � s′+ = ρ(v)s′+ follows. Analogously, one shows v � s′− = ρ(v)s′− for every v ∈ V

and s′− ∈ S− .

Finally, let s+ ∈ S+ and s′− ∈ S− be given. By an analogous argument as before, we see that s+ � s′− ∈ V

holds. For any v ∈ V we have

β(s+ � s′−, v) = βT(s+ � s′−, v) = γ(s+, s
′
−, v)

(a)(i)
= F (v + s+ + s′−) = β−(ρ(v)s+, s

′
−) ,

whence s+ � s′− = ( v 7→ β−(ρ(v)s+, s
′
−) )] follows.

For (c)(i). By (b) we have v � (v � s) = ρ(v)(ρ(v)s) = ρ(v · v)s = q(v) · s .

For (c)(ii). We have βS(v � s1, v � s2) = βS(ρ(v)s1, ρ(v)s2) = q(v) · βS(s1, s2) by (b) and Proposition B.30(b)(i).

For (c)(iii). Because both sides of the equation (c)(iii) are bilinear and symmetric in (v1, v2) , it suffices to show

the equation for the case v1 = v2 =: v , and in that case, it follows from (c)(ii).

For (d). Let a linear map σ : T → T which leaves βT and F invariant be given. Because σ leaves βT invariant,

it is a linear isomorphism, and because it leaves F invariant, it also leaves γ invariant. For any X, Y,Z ∈ T , we

now have

βT(σX � σY, σZ) = γ(σX, σY, σZ) = γ(X,Y,Z) = βT(X � Y, Z) = βT(σ(X � Y ), σZ) .

Because σ is a linear isomorphism and βT is non-degenerate, it follows that σX � σY = σ(X � Y ) holds.

For (e). It is clear that the linear map σ := ε(g) · µ(g) : T → T leaves V invariant. By Proposition B.27(b)(ii),

σ leaves S+ and S− invariant for ε(g) = 1 , whereas it exchanges S+ and S− for ε(g) = −1 . To prove that σ

is an algebra automorphism of (T, �) , it suffices to show that it leaves βT and F invariant because of (d). We

have for any Xk = vk + sk ∈ T ( k ∈ {1, 2}, vk ∈ V, sk ∈ S )

βT(σ(X1), σ(X2)) = β(χ(g)v1, χ(g)v2) + βS(ρ(g)s1, ρ(g)s2) = β(v1, v2) + ε(g) · λ(g)| {z }
=1

·βS(s1, s2) = βT(X1, X2)

by Proposition B.15(e) and Proposition B.30(b)(ii).

For the proof of the F -invariance of σ , let X = v + s+ + s− ∈ T with v ∈ V and s± ∈ S± be given. We have

χ(g)v = α(g)vg−1 = ε(g) · gvg−1 and therefore

ρ(χ(g)v) = ρ(ε(g)gvg−1) = ε(g) · ρ(g) ◦ ρ(v) ◦ ρ(g)−1 . (B.43)

We have either ε(g) = 1 and then ρ(g)s± ∈ S± , or else ε(g) = −1 and then ρ(g)s± ∈ S∓ . In either case, we

obtain

F (σ(X)) = F ( ε(g) · (χ(g)v + ρ(g)s+ + ρ(g)s−) ) = ε(g) · F (χ(g)v + ρ(g)s+ + ρ(g)s−)

= ε(g) · βS( ρ(χ(g)v)ρ(g)s+ , ρ(g)s− )

(B.43)
= βS( ρ(g)ρ(v)ρ(g)−1ρ(g)s+ , ρ(g)s− )

= βS( ρ(g)ρ(v)s+ , ρ(g)s− ) = ε(g) · λ(g) · βS(ρ(v)s+, s−) = F (X) ,

see also Proposition B.30(b)(ii). �
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B.32 Remark. The algebra (T, �) is not associative. For example, for v1, v2 ∈ V and s+ ∈ S+ , we

have by Proposition B.31(b) (v1 �v2)�s+ = 0 , but v1 � (v2 �s+) = ρ(v1 ·v2)s+ , where the latter

expression is generally non-zero.

Also, (T, �) does not have a unit element, as the following argument shows: Assuming to the

contrary that X = v + s+ + s− ∈ T satisfies X �X ′ = X ′ for every X ′ ∈ T , we have

V 3 v = X � v = v � v︸︷︷︸
=0

+ s+ � v︸ ︷︷ ︸
∈S−

+ s− � v︸ ︷︷ ︸
∈S+

(see Proposition B.31(b)) and therefore v = 0 . Similarly, one sees s+ = 0 and s− = 0 , hence

X = 0 , which is a contradiction to the assumption X �X ′ = X ′ for every X ′ ∈ T .

B.33 Theorem. Let us denote by Aut′(T) the group of algebra automorphisms of (T, �) which leave

the spaces V , S+ and S− invariant. Then µ′ := µ|Spin(V, β) : Spin(V, β) → Aut′(T) is a

group isomorphism.

Proof. For any g ∈ Spin(V, β) , we have ε(g) = 1 , and therefore Proposition B.31(e) shows that µ(g) ∈ Aut′(T)

holds. Hence µ′ in fact maps into Aut′(T) . It is clear that µ′ is an injective group homomorphism along with

µ .

It remains to show the surjectivity of µ′ . For this, let σ ∈ Aut′(T) be given. Because ρ : C(V, β) → End(S) is

an isomorphism of algebras (see Theorem B.26), there exists g ∈ C(V, β) with

ρ(g) = σ|S ∈ End(S) ; (B.44)

because σ|S is invertible, we have g ∈ C(V, β)× . Next, we show g ∈ C+(V, β) . For this, we write g = g+ + g−
with g± ∈ C±(V, β) ; then we have for any s+ ∈ S+

S+ 3 σ(s+) = ρ(g)s+ = ρ(g+)s+| {z }
∈S+

+ ρ(g−)s+| {z }
∈S−

(see Proposition B.27(b)(iii)) and therefore ρ(g−)|S+ = 0 . Analogously one shows ρ(g−)|S− = 0 , and thus we

have ρ(g−) = 0 . Because ρ : C(V, β) → End(S) is injective, we conclude g− = 0 and therefore g = g+ ∈

C+(V, β) .

For v ∈ V and s ∈ S we now have by Proposition B.31(b) and the fact that σ(V ) ⊂ V , σ(S) ⊂ S holds

ρ(g · v)s = ρ(g)(ρ(v)s)
(B.44)

= σ(ρ(v)s) = σ(v � s)

= σ(v) � σ(s) = ρ(σ(v))σ(s)
(B.44)

= ρ(σ(v))ρ(g)s = ρ(σ(v) · g)s

and therefore ρ(g · v) = ρ(σ(v) · g) . Because ρ is injective, we obtain g · v = σ(v) · g and therefore σ(v) =

gvg−1 = α(g)vg−1 . Because we have σ(V ) ⊂ V , this equation implies g ∈ Γ(V, β) and

σ|V = χ(g) . (B.45)

Because of g ∈ C+(V, β) , we in fact have g ∈ Γ+(V, β) , and Equations (B.44) and (B.45) show that µ(g) = σ

holds.

Thus, it only remains to prove λ(g) = 1 . For this, we put g′ := 1
t
· g ∈ Γ+(V, β) , where t ∈ C× is chosen such

that t2 = λ(g) holds. Then we have λ(g′) = 1 , hence g′ ∈ Spin(V, β) , and therefore µ(g′) also is an algebra

automorphism of (T, �) by Proposition B.31(e). Note that we have µ(g)|V = µ(g′)|V by Proposition B.12(b)

and µ(g)|S± = t · µ(g′)|S± by Theorem B.26. For s+ ∈ S+ and s− ∈ S− we therefore have

µ(g)(s+ � s−) = µ(g)s+ � µ(g)s− = (tµ(g′)s+) � (tµ(g′)s−) = λ(g) · (µ(g′)s+ � µ(g′)s−)

= λ(g) · µ(g′) (s+ � s−)| {z }
∈V

= λ(g) · µ(g)(s+ � s−) .
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This equality implies λ(g) = 1 , provided that there exist some s+ ∈ S+ , s− ∈ S− with s+ � s− 6= 0 . To show

that this is indeed the case, fix v ∈ V with q(v) = 1 and s− ∈ S− with q−(s−) 6= 0 , and put s+ := ρ(v)s− ∈ S+ .

Then we have ρ(v)s+ = ρ(v2)s− = ρ(q(v) 1C)s− = q(v) s− = s− and therefore by Proposition B.31(b)

β(s+ � s−, v) = β−(ρ(v)s+, s−) = β−(s−, s−) = 2 q−(s−) 6= 0 ,

whence s+ � s− 6= 0 follows. �

B.34 Theorem. (Triality on T .) Let w1 ∈ W and w′
1 ∈ W ′ be given so that β(w1, w

′
1) = 1

holds.44

We put v0 := w1 +w′
1 ∈ V and s0 := 1 + ω ∈ S+ . The linear map τ ′ : V → S−, v 7→ s0 � v is

an isomorphism of linear spaces. Let us consider the linear map τ : T → T characterized by

τ |V = τ ′ , ∀s+ ∈ S+ : τ(s+) = β+(s+, s0)s0 − s+ and τ |S− = (τ ′)−1 .

Then T := −µ(v0) ◦ τ leaves βT and F invariant and therefore is an algebra automorphism of

(T, �) . Moreover,

T 3 = idT , T (V ) = S+ , T (S+) = S− and T (S−) = V (B.46)

holds. We call any automorphism of T obtained by this construction a triality automorphism

of (T, �) .

T is described explicitly in the following way: Let (w1, . . . , w4) be an extension of w1 to a basis

of W such that w1 ∧ . . . ∧ w4 = ω holds and denote by (w′
1, . . . , w

′
4) the basis of W ′ uniquely

determined by

∀k, k′ ∈ {1, . . . , 4} : β(wk, w
′
k′) = δk,k′ (B.47)

(see Proposition B.23). Then T , T 2 and T 3 act on the basis (w1, . . . , w4, w
′
1, . . . , w

′
4) of V

in the following way:

v ∈ V Tv ∈ S+ T 2v ∈ S− T 3v ∈ V

w1 −1S w2 ∧ w3 ∧ w4 w1

w2 −w1 ∧ w2 −wS2 w2

w3 −w1 ∧ w3 −wS3 w3

w4 −w1 ∧ w4 −wS4 w4

w′
1 −w1 ∧ w2 ∧ w3 ∧ w4 wS1 w′

1

w′
2 w3 ∧ w4 w1 ∧ w3 ∧ w4 w′

2

w′
3 −w2 ∧ w4 −w1 ∧ w2 ∧ w4 w′

3

w′
4 w2 ∧ w3 w1 ∧ w2 ∧ w3 w′

4

.

Here, we denote wk by wSk when we regard it as an element of
∧1W ⊂ S− (rather than as an

element of V ).

44For any w1 ∈ W \ {0} there exist vectors w′
1 ∈ W \ {0} so that β(w1, w

′
1) = 1 holds because of the

non-degeneracy of β .
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Proof. We have v0 ∈ Γ(V, β) by Proposition B.12(c), ε(v0) = −1 , and λ(v0) = −q(v0) = −1 by Proposi-

tion B.14(b). Therefore Proposition B.31(e) shows that −µ(v0) is an automorphism of (T, �) which leaves βT

and F invariant, and which satisfies

−µ(v0)V = V , −µ(v0)S+ = S− and − µ(v0)S− = S+ . (B.48)

Furthermore, we have q+(s0) = 1 and therefore for any v1, v2 ∈ V by Proposition B.31(c)(iii)

β−(τ ′(v1), τ
′(v2)) = β−(s0 � v1, s0 � v2) = q+(s0) · β(v1, v2) = β(v1, v2) . (B.49)

Because of the non-degeneracy of β , this equation shows τ ′ : V → S− to be injective; because we have dimS− =

8 = dimV , τ ′ is in fact an isomorphism of linear spaces.

We will now show that the linear map τ : T → T leaves βT and F invariant and therefore is an isomorphism of

the algebra (T, �) by Proposition B.31(d).

For the βT-invariance of τ : Because τ permutes the βT-orthogonal spaces V ,S+ and S− , it suffices to show that

the restrictions of τ to these spaces are βT-invariant. Equation (B.49) shows that τ |V = τ ′ and τ |S− = (τ ′)−1

leave βT invariant. Now, let s+ ∈ S+ be given. Then we have

q+(τ (s+)) = 1
2
β+(β+(s+, s0)s0 − s+ , β+(s+, s0)s0 − s+ )

= 1
2

`
β+(s+, s0)

2β+(s0, s0) − 2 β+(s+, s0)β+(s0, s+) + β+(s+, s+)
´

= q+(s+) ,

and therefore τ |S+ also leaves βT invariant.

For the F -invariance of τ : Let X = v+ s+ + s− ∈ T with v ∈ V , s± ∈ S± be given. We put v′ := τ (s−) ∈ V ,

then ρ(v′)s0 = s0 � v′ = τ (v′) = s− holds (see Proposition B.31(b)). For the following calculations, keep

Propositions B.30(b) and B.31(b),(c) in mind. We have

F (τ (X)) = F (τ (v)|{z}
∈S−

+ τ (s+)| {z }
∈S+

+ v′|{z}
∈V

)

= β−( ρ(v′)(τ (s+)) , τ (v) ) = β+( τ (s+) , ρ(v′)(τ (v)) )

= β+( β+(s+, s0)s0 − s+ , ρ(v′)ρ(v)s0 )

= β+(s+, s0) · β+(s0, ρ(v
′)ρ(v)s0) − β+(s+, ρ(v

′)ρ(v)s0) . (B.50)

Now, we have

β+(s0, ρ(v
′)ρ(v)s0) = β+(ρ(v′)s0, ρ(v)s0) = β+(v′ � s0, v � s0) = q+(s0) · β(v′, v) = β(v, v′) .

Therefore, we can continue the calculation of (B.50) in the following way:

F (τ (X)) = β+(s+, s0) · β(v, v′) − β+(s+, ρ(v
′)ρ(v)s0)

= β+( s+ , β(v, v′)s0 − ρ(v′)ρ(v)s0 )

= β+( s+ , ρ(β(v, v′) 1C − v′ · v)s0 )

= β+( s+ , ρ(v · v′)s0 ) = β+( s+ , ρ(v)(ρ(v′)s0) ) = β+( s+ , ρ(v)s− )

= β−(ρ(v)s+, s−) = F (X) .

Thus we have proved that τ : T → T is an algebra automorphism. Also, we have

τ (V ) = S− , τ (S+) = S+ and τ (S−) = V . (B.51)

Therefore T = −µ(v0) ◦ τ also is an algebra automorphism, and from Equations (B.48) and (B.51) we see that

T (V ) = S+ , T (S+) = S− and T (S−) = V

holds.
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Now, let an extension of w1 to a basis (w1, . . . , w4) of W so that ω = w1 ∧ . . .∧w4 holds be given, and denote

by (w′
1, . . . , w

′
4) the basis of W ′ uniquely characterized by (B.47) (see Proposition B.23). One can then verify

the table of values of T given in the theorem by explicitly calculating T (X) for the elements X ∈ T mentioned

in that table. For example, one has for k ∈ {1, . . . , 4}

τ (wk) = s0 � wk = ρ(wk)(1 + ω) = wk ∧ (1 + ω) = wS
k

and consequently

T (wk) = −µ(v0)(τ (wk)) = −ρ(v0)w
S
k = −(ρ(w1)w

S
k + ρ(w′

1)w
S
k ) = −(w1 ∧ wk + νβ(·,w′

1)w
S
k )

= −w1 ∧ wk − β(wk, w
′
1) · 1S =

(
−1S for k = 1

−w1 ∧ wk for k ≥ 2
.

It also follows from the table that T 3 = idT holds.45 �

B.35 Theorem. (Triality on Spin(V, β) .) Let T : T → T be a triality automorphism. Then there

exists one and only one automorphism ϑ : Spin(V, β) → Spin(V, β) of Lie groups of order 3

(i.e. which satisfies ϑ3 = idSpin(V,β) ) so that

∀g ∈ Spin(V, β) : T ◦ µ(g) = µ(ϑ(g)) ◦ T (B.52)

holds. We call ϑ the triality automorphism of Spin(V, β) corresponding to T .

Proof. Let g ∈ Spin(V, β) be given. By Proposition B.31(e), µ(g) , and thus also T◦µ(g)◦T−1 is an automorphism

of the algebra (T, �) which leaves the spaces V , S+ and S− invariant. Theorem B.33 therefore shows that

there exists one and only one element ϑ(g) ∈ Spin(V, β) so that µ(ϑ(g)) = T ◦ µ(g) ◦ T−1 and therefore

Equation (B.52) holds. We have ϑ = (µ|Spin(V, β))−1 ◦ f ◦ (µ|Spin(V, β)) with the group automorphism f :

Aut′(T) → Aut′(T), A 7→ T ◦ A ◦ T−1 ; because µ|Spin(V, β) : Spin(V, β) → Aut′(T) also is an isomorphism

of groups, we see that ϑ is an automorphism of the group Spin(V, β) . Moreover, we have for g ∈ Spin(V, β) :

µ(ϑ3(g)) = T 3 ◦ µ(g) ◦ T−3 = µ(g) and thus because µ is injective ϑ3(g) = g .

For the differentiability of ϑ : Aut′(T) is a closed subgroup of the Lie group GL(T) and therefore inherits a Lie

group structure in a canonical way (see [Var74], Theorem 2.12.6, p. 99). In this regard, f is differentiable (note

that T is a linear isomorphism), and also µ|Spin(V, β) : Spin(V, β) → Aut′(T) is differentiable. It follows that ϑ

is an automorphism of Lie groups.

Note that the only property of T we used in the proof is the fact that it is an algebra automorphism of (T, �)

which satisfies (B.46). �

Let T : T → T be a triality automorphism of (T, �) and ϑ : Spin(V, β) → Spin(V, β) be the

corresponding triality automorphism of Spin(V, β) . Considering the way the representation µ

is composed of the representations χ and ρ (see Equation (B.38)), we see that Equation (B.52)

implies that we have for any g ∈ Spin(V, β) :

(T |V ) ◦ χ(g) = ρ+(ϑ(g)) ◦ (T |V ) ,

(T |S+) ◦ ρ+(g) = ρ−(ϑ(g)) ◦ (T |S+) , (B.53)

and (T |S−) ◦ ρ−(g) = χ(ϑ(g)) ◦ (T |S−) .

45For a different proof for T 3 = idT which does not involve calculations using the bases (w1, . . . , w4) and

(w′
1, . . . , w

′
4) see [Che54], p. 119f.
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Thus we have attained the objective of “intertwining” the representations χ , ρ+ and ρ− , as

was described at the beginning of the section. Indeed, the preceding equations show that with

the linear isometries TV+ := T |V : (V, β) → (S+, β+) , T+− := T |S+ : (S+, β+) → (S−, β−) and

T−V := T |S− : (S−, β−) → (V, β) Diagram (B.37) commutes.

From Equations (B.53) we also see that in the present situation, the representations ρ+ :

Spin(V, β) → GL(S+) and ρ− : Spin(V, β) → GL(S−) are irreducible, a fact that holds

in the general situation of Section B.5 but was not proved there. Indeed, from the first

equation of (B.53) it follows that ρ+ ◦ ϑ = (g 7→ (T |V ) ◦ χ(g) ◦ (T |V )−1) holds. Because

χ|Spin(V, β) : Spin(V, β) → GL(V ) is irreducible (remember that χ(Spin(V, β)) = SO(V, β)

holds by Proposition B.15(e)), ϑ is an automorphism of Spin(V, β) and T |V : V → S+ is

a linear isomorphism, it follows that ρ+ is irreducible. An analogous argument involving the

equation ρ− ◦ ϑ = (g 7→ (T |S+) ◦ ρ+(g) ◦ (T |S+)−1) shows that the irreducibility of ρ+ implies

the irreducibility of ρ− .

It is of interest to describe the kernels of the actions ρ+ and ρ− explicitly, analogously to the

description of the kernel of χ|Spin(V, β) in Proposition B.15(d). Besides the elements of these

kernels, the elements of (χ|Spin(V, β))−1({−idV }) , ρ−1
+ ({−idS+}) and ρ−1

− ({−idS−}) play a

special role. The following proposition is concerned with the mentioned elements.

B.36 Proposition. (a) There exist elements g+, g− ∈ Spin(V, β) so that besides the already known

equation ker(χ|Spin(V, β)) = {1,−1} (see Proposition B.15(d)) we also have

ker ρ+ = {1, g+} and ker ρ− = {1, g−} .

(b) The elements 1,−1, g+, g− are pairwise unequal, and they are multiplied in the following

way:

· 1 −1 g+ g−
1 1 −1 g+ g−
−1 −1 1 g− g+
g+ g+ g− 1 −1

g− g− g+ −1 1

.

Therefore G := {1,−1, g+, g−} is a subgroup of Spin(V, β) isomorphic to the Klein four-

group. Also, we have g− = −g+ .

(c) The elements of G act via χ and ρ± in the following way:

g ∈ G χ(g) ρ+(g) ρ−(g)

1 idV idS+ idS−

−1 idV −idS+ −idS−

g+ −idV idS+ −idS−

g− −idV −idS+ idS−

.
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(d) Let ϑ : Spin(V, β) → Spin(V, β) be any triality automorphism of Spin(V, β) . Then ϑ

maps in the following way:

−1
ϑ7−→ g+

ϑ7−→ g−
ϑ7−→ −1 .

In particular, the subgroup G is invariant under ϑ .

(e) Let (w1, . . . , w4) be any basis of W , and let (w′
1, . . . , w

′
4) be the basis of W ′ characterized

by β(wk, w
′
`) = δk` . Then we have

g+ = (w1 + w′
1) · (w1 − w′

1) · · · (w4 + w′
4) · (w4 − w′

4)

= (w′
1 · w1 − w1 · w′

1) · · · (w′
4 · w4 − w4 · w′

4) . (B.54)

Proof. Let ϑ be any triality automorphism of Spin(V, β) . Equations (B.53) show that we have ker ρ+ =

ϑ(kerχ|Spin(V, β)) = ϑ({1,−1}) = {1, ϑ(−1)} and similarly ker ρ− = {1, ϑ2(−1)} . Therefore (a) is fulfilled with

g+ := ϑ(−1) and g− := ϑ2(−1) , and there is no other way to define g+ and g− . Then (d) also holds; note that

we have ϑ3 = idSpin(V,β) .

We next verify the table in (c). The line for g = 1 is obvious, and the line for g = −1 follows from Proposi-

tion B.15(d) and Theorem B.26. The line for g = g+ follows from the line for g = −1 via Equations (B.53) in

the following way:

ρ+(g+) = (T |V ) ◦ χ(−1) ◦ (T |V )−1 = idS+ ,

ρ−(g+) = (T |S+) ◦ ρ+(−1) ◦ (T |S+)−1 = −idS−
and

χ(g+) = (T |S−) ◦ ρ−(−1) ◦ (T |S−)−1 = −idV .

The line for g = g− follows from the line for g = g+ in an analogous way.

For (b), we first note that the table in (c) shows that the elements 1,−1, g+, g− are pairwise unequal. By (c) and

the fact that ρ : C(V, β) → End(S) is an algebra isomorphism (Theorem B.26), we have

ρ(g+ · g+) = ρ(g− · g−) = idS = ρ(1) and ρ(g+ · g−) = ρ(g− · g+) = −idS = ρ(−1) ,

whence by the injectivity of ρ we obtain

g+ · g+ = g− · g− = 1 and g+ · g− = g− · g+ = −1 . (B.55)

Via calculations in the Clifford algebra C(V, β) in which G is contained, we deduce from (B.55) first g−1
± = g± ,

then g− = −g+ , and then the correctness of the table in (b).

For the proof of (e), let us put g := (w1 + w′
1) · (w1 − w′

1) · · · (w4 + w′
4) · (w4 −w′

4) . Below, we show

ρ+(g) = idS+ and ρ−(g) = −idS−
. (B.56)

By comparison with the table in (c), we see from Equations (B.56) that ρ(g) = ρ(g+) holds, whence the first

equality g = g+ in (B.54) follows because of the injectivity of ρ .

For the proof of (B.56): For k ∈ {1, . . . , 4} , the elements vk := wk − w′
k and evk := i (wk + w′

k) satisfy q(vk) =

q(evk) = −1 by Proposition B.25(a), and therefore we have gk := evk · vk ∈ Spin(V, β) by Proposition B.15(c)(ii).

We have

gk = i (wk + w′
k) · (wk − w′

k) = i (wk · wk| {z }
=0

−wk · w′
k + w′

k · wk| {z }
=1−wk ·w′

k

−w′
k · w′

k| {z }
=0

) = i (1 − 2wk · w′
k) . (B.57)
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We now use the notation wN of (B.21) with respect to the given basis (w1, . . . , w4) of W , and let N ⊂ {1, . . . , 4}

be given. In order to calculate ρ(gk)wN , we put ` := #{ k′ ∈ N | k′ < k } . Then we have

ρ(gk)wN
(B.57)

= ρ(i (1 − 2wk · w′
k))wN = i (wN − 2 ρ(wk) ρ(w′

k)wN ) = i (wN − 2wk ∧ νβ(·,w′

k
)(wN ))

=

(
i (wN − 2 (−1)` wk ∧ wN\{k}) = i (wN − 2wN ) = −(i wN ) for k ∈ N

iwN for k 6∈ N
. (B.58)

Hence we see that g = i4 g = g1 · · · g4 ∈ Spin(V, β) holds and that we have

ρ(g)wN = ρ(g1) · · · ρ(g4)wN
(B.58)

= i4 (−1)#N wN = (−1)#N wN ,

whence Equations (B.56) follow.

The second equals sign in (B.54) now follows from the fact that we have for any k ∈ {1, . . . , 4}

(wk + w′
k) · (wk − w′

k) = wk wk − wk w
′
k + w′

k wk − w′
k w

′
k = w′

k wk − wk w
′
k .

�

B.37 Corollary. ϑ does not descend to an automorphism of SO(V, β) , more precisely: There exists

no Lie group automorphism Θ : SO(V, β) → SO(V, β) so that

(χ|Spin(V, β)) ◦ ϑ = Θ ◦ (χ|Spin(V, β))

holds.

Proof. If such a Lie group automorphism Θ existed, ker(χ|Spin(V, β)) = {±1} would be invariant under ϑ ,

which is a contradiction to Proposition B.36. �

B.38 Remark. The non-associative complex division algebra of octonions with complex coefficients

OC can be obtained from the triality algebra by the following construction: Fix v0 ∈ V and

s0 ∈ S+ with q(v0) = q+(s0) = 1 and put s′0 := v0 � s0 ∈ S− . Then it can be shown that V

becomes an 8-dimensional complex division algebra isomorphic to OC via the composition map

? : V × V → V, (x, y) 7→ x ? y := (x � s′0) � (y � s0) ;

its unit element is v0 . (See [Che54], Section IV.5, p. 123ff.) We remark that the automorphism

group of (V, ?) is isomorphic to the exceptional simple Lie group G2 .

If w1 ∈ W and w′
1 ∈ W ′ are given with β(w1, w

′
1) = 1 , T is the triality automorphism of

(T, �) corresponding to this choice of w1, w
′
1 and if we perform the above construction of the

composition ? with v0 = w1 + w′
1 and s0 = 1 + ω , then the triality automorphism ϑ of

Spin(V, β) corresponding to T can be characterized by

∀g ∈ Spin(V, β), x, y ∈ V : χ(g)(x ? y) = χ(ϑ2g)x ? χ(ϑg)y , (B.59)

see [Che54], p. 125. Here, x denotes the conjugation of (V, ?) , i.e. the linear map characterized

by v0 = v0 and x = −x for any x ∈ V with β(x, v0) = 0 .

It is possible to base the theory of triality on Equation (B.59); for an example of this approach,

see [Por95], Chapter 24, in particular Theorem 24.13, p. 278.
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Zusammenfassung in deutscher Sprache

Die komplexen Hyperflächen eines komplex-projektiven Raums IPn , die (abgesehen von den

projektiven Unterräumen, deren Geometrie vollständig bekannt ist) die geringste Komplexität

aufweisen, sind diejenigen, die durch eine nicht-entartete quadratische Gleichung bestimmt wer-

den, die komplexen Quadriken. Diese sind vom algebraischen Standpunkt alle gleichwertig. Be-

trachtet man den IPn jedoch als Riemannsche Mannigfaltigkeit (mit der Fubini-Study-Metrik),

so zeigt sich, dass bestimmte komplexe Quadriken besonders gut an diese Metrik angepasst sind,

insbesondere handelt es sich bei ihnen um symmetrische Untermannigfaltigkeiten des Riemann-

symmetrischen Raums IPn . Diese Quadriken zeichnen sich auch dadurch aus, dass sie (abge-

sehen von den projektiven Unterräumen) die einzigen komplexen Hyperflächen im IPn sind,

die Einstein-Mannigfaltigkeiten sind (siehe Smyth, [Smy67]). Ist im Folgenden von komplexen

Quadriken die Rede, so sind stets diejenigen Quadriken gemeint, die in der beschriebenen Weise

an die Metrik von IPn angepasst sind.

Während das algebraische Verhalten der komplexen Quadrik Q gut bekannt ist, ist über die

innere und äußere Riemannsche Geometrie der komplexen Quadrik noch einiges zu sagen; die

vorliegende Dissertation liefert einen Beitrag hierzu. Im Einzelnen werden die folgenden Unter-

suchungen durchgeführt bzw. die folgenden Hauptergebnisse erzielt:

– Die Klassifikation der totalgeodätischen Untermannigfaltigkeiten der komplexen Quadrik.

– Die Untersuchung bestimmter Kongruenz-Familien von totalgeodätischen Untermannigfal-

tigkeiten in Q ; diese werden in einem allgemeinen Kontext mit der Struktur eines natürlich

reduktiven homogenen Raums versehen, und es wird untersucht, in welchen Fällen diese

Struktur von der Struktur eines symmetrischen Raums herkommt.

– Es wird gezeigt, dass sich die Menge der in einer Quadrik enthaltenen k-dimensionalen

”
Unterquadriken“ (diese sind alle zueinander isometrisch) aus einer Ein-Parameter-Schar

von Kongruenzklassen zusammensetzt; außerdem wird die extrinsische Geometrie dieser

Unterquadriken untersucht.

– Bekanntlich bestehen die folgenden Isomorphien zwischen komplexen Quadriken niederer

Dimension und Gliedern anderer Serien Riemann-symmetrischer Räume:

Q1 ∼= S2, Q2 ∼= IP1×IP1, Q3 ∼= Sp(2)/U(2), Q4 ∼= G2(C
4) und Q6 ∼= SO(8)/U(4) .

Hierzu werden auf einem recht geometrischen Weg Isomorphismen explizit konstruiert.
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Im Folgenden schildere ich mein Vorgehen zur Erzielung dieser Ergebnisse, und diskutiere diese

genauer.

Für das Studium der Geometrie einer Riemannschen Mannigfaltigkeit spielt ihr Krümmungs-

tensor eine wesentliche Rolle. Dies zeigt sich beispielsweise daran, dass zumindest falls der

Krümmungstensor parallel ist, er schon alle Informationen über die lokale Struktur der be-

treffenden Riemannschen Mannigfaltigkeit enthält (wie die lokale Version des Theorems von

Cartan/Ambrose/Hicks zeigt). Ein weiterer Grund liegt darin, dass die Tangentialräume der

Mannigfaltigkeit durch den Krümmungstensor mit einer zusätzlichen Struktur versehen werden,

die insbesondere für die Untermannigfaltigkeitsgeometrie der Mannigfaltigkeit von Bedeutung

ist. Daher ist die algebraischen Struktur des Krümmungstensors für das Verständnis der Geo-

metrie der Mannigfaltigkeit von großem Interesse.

In der Arbeit [Rec95] von Prof. H. Reckziegel, die den Ausgangspunkt für die Dissertation

bildete, wird dieser Gedanke für die komplexe Quadrik durchgeführt. Die Kapitel 1–3 der Dis-

sertation (mit Ausnahme von Abschnitt 3.4) stellen eine erweiterte, ausführliche Ausarbeitung

der Arbeit von Reckziegel dar.

Der folgende in [Rec95] eingeführte Begriff spielt für die gesamte Dissertation eine entscheidende

Rolle: Ist V ein unitärer Vektorraum und A eine Konjugation46 auf V , so nennen wir, [Rec95]

folgend, den
”
Kreis von Konjugationen“ A := {λA |λ ∈ S1 } eine CQ-Struktur und das Paar

(V,A) einen CQ-Raum.

Die große Bedeutung des Begriffs der CQ-Struktur für die Untersuchung komplexer Quadriken

hat zwei Ursachen: Die eine ist, dass die Menge der CQ-Strukturen auf einem unitären Vek-

torraum V in eineindeutiger Beziehung zu der Menge der (im oben erläuterten Sinne) an die

Metrik von IP(V) angepassten komplexen Quadriken in IP(V) steht.

Die zweite, noch wesentlichere Ursache für die Bedeutung von CQ-Strukturen für die Unter-

suchung der komplexen Quadrik ergibt sich aus dem folgenden Ergebnis, das schon in [Rec95]

zentral ist: Ist Q ⊂ IP(V) eine komplexe Quadrik und bezeichnen wir für p ∈ Q mit ⊥1
pQ

die Menge der Einheitsnormalenvektoren an Q in p , und für η ∈⊥1
pQ mit Aη den Form-

operator von Q bezüglich η , so ist die Menge A(Q, p) := {Aη | η ∈⊥1
pQ } eine CQ-Struktur

auf dem Tangentialraum TpQ . Weil es aufgrund der Gaußschen Ableitungsgleichung zweiter

Ordnung möglich ist, den Krümmungstensor von Q in p mit Hilfe dieser CQ-Struktur A(Q, p)

(sowie der Riemannschen Metrik und der komplexen Struktur von Q ) auszudrücken, werden

durch die CQ-Räume (TpQ,A(Q, p))p∈Q die lokalen Informationen über die komplexe Quadrik

in Gänze widergegeben. In diesem Sinne erscheint es sinnvoll, die Riemannsche Metrik von Q ,

die komplexe Struktur von Q , und die durch den Formoperator induzierte Familie (A(Q, p))p∈Q
von CQ-Strukturen als die

”
fundamentalen geometrischen Objekte“ der komplexen Quadrik Q

anzusehen; die Dissertation ist von dieser Sichtweise geprägt.

46Sei V ein unitärer Raum, dessen komplexe Struktur wir mit J : V → V, v 7→ i · v und dessen komplexes

Skalarprodukt wir mit 〈·, ·〉C bezeichnen. Dann heißt eine IR-lineare Abbildung A : V → V eine Konjugation auf

V , wenn sie bezüglich des reellen Skalarprodukts Re(〈·, ·〉C) selbstadjungiert und orthogonal ist, und außerdem

A ◦ J = −J ◦ A gilt.
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Man beachte, dass zwei CQ-Räume gleicher Dimension zueinander isomorph sind. Aus diesem

Grunde kann man viele Informationen über die beiden beschriebenen Situationen schon durch

das abstrakte Studium von CQ-Räumen erhalten. Dies geschieht in Kapitel 2 der Dissertation.

Zwei der dort hergeleiteten Tatsachen sind für die weitere Arbeit mit CQ-Räumen von besonders

großer Bedeutung:

(1) Die Gruppe Aut(A) der CQ-Automorphismen von (V,A) (d.h. derjenigen unitären Trans-

formationen B : V → V , für die B ◦ A ◦ B−1 ∈ A für alle A ∈ A gilt) operiert nicht transitiv

auf der Einheitssphäre S(V) (und somit sind in einem CQ-Raum, anders als in einem unitären

Raum, nicht alle Einheitsvektoren
”
gleichwertig“), und zwar gibt es eine surjektive, stetige Funk-

tion ϕA : S(V) → [0, π4 ] , die auf ϕ−1
A

(]0, π4 [) submersiv ist, so dass die Orbits der Operation

von Aut(A) auf S(V) gerade die Niveauflächen von ϕA sind. Dieser Tatbestand ist schon

in [Rec95] zu finden; neu ist jedoch die einfache Beschreibung von ϕA durch die Gleichung

2 cos(ϕA(v)) = |〈v,Av〉C| mit einem beliebigen A ∈ A (siehe Theorem 2.28(a)).

(2) Wie oben schon gesagt wurde, läßt sich der Krümmungstensor einer komplexen Quadrik

Q in p ∈ Q allein durch die Größen des CQ-Raums (TpQ,A(Q, p)) beschreiben. Aus diesem

Grunde läßt sich ein diesem Krümmungstensor entsprechender Tensor auf einem beliebigen CQ-

Raum (V,A) einführen, wir nennen ihn den Krümmungstensor R des CQ-Raums. Es werden die

(schon in [Rec95] zu findenden) Eigenwerte und -räume des Jacobi-Operators R( · , w)w : V → V
(Abschnitt 2.7) sowie die bezüglich R flachen Unterräume von V (Abschnitt 2.8) angegeben.

Diese Informationen sind für das Folgende von entscheidendem Nutzen.

Die Erkenntnisse über CQ-Räume werden in Kapitel 3 auf komplexe Quadriken angewandt.

Abschnitt 3.1 zeigt, auf welche Weise CQ-(Anti-)Automorphismen eines CQ-Raums (V,A)

(anti-)holomorphe Isometrien der durch die CQ-Struktur A bestimmten komplexen Quadrik

Q(A) ⊂ IP(V) induzieren. Der grundsätzliche Tatbestand, der im Wesentlichen schon in [Rec95]

zu finden ist, wird hier ergänzt durch eine Beschreibung der
”
Beweglichkeit“ von Basen in

TpQ in der Sprache der CQ-Theorie (Theorem 3.5). Daraus folgt auch die wohlbekannte Tat-

sache, dass eine m-dimensionale komplexe Quadrik Q ein zu SO(m + 2)/(SO(2) × SO(m))

isomorpher Hermitesch-symmetrischer Raum ist; die durch die symmetrische Struktur indu-

zierte Spaltung o(m + 2) = k ⊕ m wird explizit beschrieben. Die Informationen aus den Ab-

schnitten 2.7 und 2.8 über den Krümmungstensor kann man nun als Beschreibung der Cartan-

Unteralgebren, der Wurzeln und der Wurzelräume des symmetrischen Raums Q deuten; die-

se Sichtweise wird hier bedeutend stärker als in [Rec95] genutzt. Während die Struktur des

Wurzelsystems von Q natürlich wohlbekannt ist, ist die hier vorliegende explizite Beschrei-

bung der Cartan-Unteralgebren und der Wurzelräume, die allein die Größen des CQ-Raums

(TpQ,A(Q, p)) verwendet (und die insbesondere ohne
”
künstliche“ Koordinaten auskommt) an

anderer Stelle nicht zu finden, und für die folgenden Untersuchungen wesentlich.

Die bisher beschriebenen Ergebnisse bilden das Fundament der vorliegenden Untersuchung der

Geometrie komplexer Quadriken.

Als erste Anwendung werden in Abschnitt 3.3 die Isometrien der komplexen Quadrik Q klas-

sifiziert. Das wesentliche Ergebnis, dass nämlich (a) jede (anti-)holomorphe Isometrie Q → Q
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von einem CQ-(Anti-)Automorphismus herrührt, und dass (b) für dimQ 6= 2 jede Isometrie

f : Q → Q entweder holomorph oder anti-holomorph ist (Theorem 3.23), ist zwar schon in

[Rec95] zu finden; mir ist jedoch ein wesentlich kürzerer Beweis möglich, bei dem ich ausnutze,

dass für jede Isometrie f : Q → Q und jedes p ∈ Q gilt: ϕA(Q,f(p)) ◦ (f∗|S(TpQ)) = ϕA(Q,p)

(wie sich aus der Äquivarianz des Krümmungsoperators unter f∗ ergibt).

Inhalt der Kapitel 4 und 5 ist die Klassifikation der totalgeodätischen Untermannigfaltigkeiten

der komplexen Quadrik Q .

Schon Chen und Nagano haben sich in ihren Arbeiten [CN77] und [CN78] mit der Klassifikation

totalgeodätischer Untermannigfaltigkeiten in symmetrischen Räumen befasst. Die Arbeit [CN77]

gibt eine Klassifikation der totalgeodätischen Untermannigfaltigkeiten komplexer Quadriken mit

Hilfe von
”
ad-hoc-Methoden“ an. Allerdings enthält diese mehrere Lücken, die dazu führen, dass

zwei Typen von totalgeodätischen Untermannigfaltigkeiten übersehen werden. Auch sind die in

[CN77] benutzten Argumente nicht immer stichhaltig. — War [CN77] noch ausschließlich mit der

Untersuchung der komplexen Quadrik befasst, so ist die in der Anschlußarbeit [CN78] eingeführte

(M+,M−)-Methode ein Hilfsmittel zur Bestimmung totalgeodätischer Untermannigfaltigkeiten

in allgemeinen symmetrischen Räumen von kompaktem Typ. Jedoch handelt es sich nur um ein

notwendiges Kriterium für die Existenz einer totalgeodätischen Einbettung von einem symme-

trischen Raum in einen anderen. Man erhält durch die (M+,M−)-Methode also weder Beweise

für die Existenz totalgeodätischer Untermannigfaltigkeiten in einem symmetrischen Raum, noch

Informationen über deren Lage. Deshalb ergeben die zitierten Arbeiten keine zufriedenstellende

Untersuchung der totalgeodätischen Untermannigfaltigkeiten der komplexen Quadrik, und auch

sonst ist mir eine solche Untersuchung nicht bekannt.

Für die detailliertere Diskussion der Arbeiten [CN77] und [CN78], sowie der älteren Arbeit

[CL75] von Chen und Lue, in der die reell-2-dimensionalen totalgeodätischen Untermannigfal-

tigkeiten von Q untersucht werden, verweise ich auf Bemerkung 4.13.

Bei der von mir durchgeführten Klassifikation der totalgeodätischen Untermannigfaltigkeiten

von Q verwende ich weder die in [CN77] benutzten Mittel noch die (M+,M−)-Methode. Statt-

dessen gehe ich wie folgt vor: Bekanntlich sind die zusammenhängenden, vollständigen, total-

geodätischen Untermannigfaltigkeiten des symmetrischen Raums Q genau dessen symmetrische

Unterräume, und die durch einen Punkt p ∈ Q verlaufenden symmetrischen Unterräume stehen

in bijektiver Beziehung zu den krümmungsinvarianten Unterräumen des Tangentialraums TpQ .

Das Problem der Klassifikation der totalgeodätischen Untermannigfaltigkeiten von Q zerfällt

also in zwei Teile: (1) Die Klassifikation der krümmungsinvarianten Unterräume von TpQ und

(2) Die Beschreibung des globalen Isometrietyps und der Lage in Q der zu den im ersten Teil

gefundenen krümmungsinvarianten Unterräumen gehörenden totalgeodätischen Untermannig-

faltigkeiten.

Die Lösung des ersten Teilproblems beruht auf der Verbindung der allgemeinen Wurzelraumtheo-

rie symmetrischer Räume mit den durch die Theorie der CQ-Räume erhaltenen und beschrie-

benen konkreten Resultaten für die komplexe Quadrik. Zunächst leite ich in Abschnitt 4.2 für

einen allgemeinen symmetrischen Raum M von kompaktem Typ Beziehungen zwischen den
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Wurzeln bzw. Wurzelräumen von M und den Wurzeln bzw. Wurzelräumen seiner symmetri-

schen Unterräume her. Dank der expliziten Darstellung der Wurzeln und Wurzelräume von Q

in Abschnitt 3.2 erhält man durch die Anwendung der Beziehungen auf M = Q Bedingungen

für die mögliche Lage von krümmungsinvarianten Unterräumen in TpQ , welche eine Klassi-

fikation dieser Unterräume ermöglichen; dies ist in den Abschnitten 4.3 und 4.4 ausgeführt.

Der Klassifikationsbeweis wird durch Symmetrieeigenschaften der Wurzelsysteme vereinfacht

und strukturiert; zur Nutzung dieser Symmetrieeigenschaften bin ich durch einen Hinweis von

Prof. J.-H. Eschenburg (Augsburg) angeregt worden.

Das zweite Teilproblem wird in Kapitel 5 angegangen: Hier werden für die zuvor gefundenen

krümmungsinvarianten Unterräume U von TpQ (mit Ausnahme eines bestimmten Kongruenz-

typs von 2-dimensionalen Unterräumen) totalgeodätische, injektive isometrische Immersionen

in Q angegeben, deren Bild jeweils tangential zu U verläuft. Damit ist die Klassifikation der

totalgeodätischen Untermannigfaltigkeiten der komplexen Quadrik abgeschlossen.

Unter den totalgeodätischen Untermannigfaltigkeiten einer m-dimensionalen komplexen Qua-

drik Q ⊂ IP(V) verdienen gewisse Typen besondere Erwähnung (eine vollständige Liste ist in

Theorem 5.1 zu finden): (1) Für jedes k < m gibt es totalgeodätische Untermannigfaltigkei-

ten Q′ von Q , die isometrisch zu einer k-dimensionalen komplexen Quadrik sind. Diese sind

”
Unterquadriken“ von Q , das soll heißen: Es existiert jeweils ein komplex-(k+1)-dimensionaler

projektiver Unterraum Λ ⊂ IP(V) , so dass Q′ eine komplexe Quadrik in Λ im bisherigen Sinne

ist. (2) Für jedes k ≤ m
2 gibt es komplex-k-dimensionale projektive Unterräume von IP(V) ,

die ganz in Q enthalten und daher totalgeodätische Untermannigfaltigkeiten von Q sind. (3)

Ist m ≥ 3 , so gibt es in Q totalgeodätische Untermannigfaltigkeiten, die isometrisch zu ei-

ner 2-Sphäre vom Radius 1
2

√
10 sind; diese Untermannigfaltigkeiten sind weder komplex noch

total-reell. Ihr Durchmesser π
2

√
10 ist größer als der Durchmesser π√

2
der Quadrik Q .

Es stellt sich die Frage, ob es neben den in (1) genannten, totalgeodätischen k-dimensionalen

Unterquadriken von Q noch weitere (nicht totalgeodätische) gibt. Wie ich in Kapitel 6 zeige,

ist diese Frage für k ≤ m
2 − 1 positiv zu beantworten. Für diese k gibt es unendlich viele Kon-

gruenzklassen von k-dimensionalen Unterquadriken von Q , die Menge dieser Kongruenzklassen

wird durch einen
”
Winkel“ t ∈ [0, π4 ] parametrisiert (der in enger Beziehung zu der Funktion

ϕA : S(V) → [0, π4 ] steht), und eine Unterquadrik Q′ ist genau dann eine totalgeodätische Un-

termannigfaltigkeit von Q , wenn sie zur Kongruenzklasse mit t = 0 gehört. Ich zeige auch, dass

die zweite Fundamentalform der Inklusion Q′ ↪→ Q genau dann parallel ist, wenn Q′ entweder

zur Kongruenzklasse mit t = 0 oder zur Kongruenzklasse mit t = π
4 gehört. Die Elemente

der letzteren Kongruenzklasse sind genau diejenigen Unterquadriken von Q , deren umgebender

projektiver Unterraum Λ ⊂ IP(V) ganz in Q enthalten ist.

Ist für t ∈ [0, π4 ] Q′
t eine Unterquadrik von Q , die zur Kongruenzklasse mit dem Parameter t

gehört, so ist die gesamte Kongruenzklasse von Unterquadriken zu diesem Parameter definitions-

gemäß durch { f(Q′
t) | f ∈ I(Q) } gegeben, wobei I(Q) die Isometriegruppe von Q bezeichnet.

In der allgemeinen Situation, wo M ein beliebiger Riemann-symmetrischer Raum und N0 ei-

ne Untermannigfaltigkeit von M ist, nenne ich die Menge F(N0,M) := { f(N0) | f ∈ I(M) }
die von N0 induzierte

”
Familie von kongruenten Untermannigfaltigkeiten“ oder

”
Kongruenzfa-
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milie“. Die in Kapitel 7 durchgeführte Untersuchung solcher Kongruenzfamilien stellte ich an,

nachdem mich Prof. M. Rapoport (Bonn) auf die Untersuchung der in einer m-dimensionalen

komplexen Quadrik enthaltenen projektiven Unterräume in [GH78], S. 735f hinwies, dort wer-

den jedoch keine metrischen Gesichtspunkte berücksichtigt. Die Ergebnisse sind mittlerweile als

[KR05] veröffentlicht worden.

In Abschnitt 7.1 wird zunächst in einer allgemeinen Situation gezeigt, wie man eine Kongru-

enzfamilie mit der Struktur einer Riemannschen Mannigfaltigkeit versehen kann, und dass sie

dadurch zu einem natürlich reduktiven Riemannsch homogenen Raum wird. Anschließend un-

tersuche ich spezielle Beispiele von Kongruenzfamilien. Zum einen (in Abschnitt 7.2) zwei Bei-

spiele im komplex-projektiven Raum IP(V) : die von einem projektiven Unterraum erzeugte und

die von einer k-dimensionalen komplexen Quadrik erzeugte Kongruenzfamilie; zum anderen (in

Abschnitt 7.3) zwei Beispiele in einer komplexen Quadrik Q ⊂ IP(V) : die von einer totalgeodäti-

schen Unterquadrik von Q erzeugte und die von einem in Q enthaltenen projektiven Unterraum

der Dimension ≤ m
2 erzeugte Kongruenzfamilie. (Die zuletzt genannte Kongruenzfamilie ist die

in [GH78] behandelte.) Es zeigt sich, dass für gewisse, aber nicht alle der betrachteten Beispiele

die reduktive Struktur der Kongruenzfamilie von einer symmetrischen Struktur erzeugt wird.

Beispielsweise gilt für die von einem k-dimensionalen, in der m-dimensionalen Quadrik Q ent-

haltenen projektiven Unterraum erzeugte Kongruenzfamilie F(IPk, Q) (siehe Theorem 7.11): Ist

2k = m , so besitzt F(IPk, Q) genau zwei Zusammenhangskomponenten und diese lassen sich

derart mit der Struktur eines zu SO(m + 2)/U(k + 1) isomorphen Hermitesch-symmetrischen

Räumen versehen, dass die symmetrische Struktur die ursprüngliche natürlich reduktive Struktur

erzeugt. Ist hingegen 2k < m , so ist F(IPk, Q) zusammenhängend, und die natürlich reduktive

Struktur von F(IPk, Q) wird nicht von einer symmetrischen Struktur erzeugt.

Wie zuerst von E. Cartan bemerkt wurde und wohlbekannt ist, sind die komplexen Quadri-

ken Qm von Dimension m ∈ {1, 2, 3, 4, 6} (und keine weiteren) als Riemann-symmetrische

Räume isomorph zu Mitgliedern anderer Reihen von Riemann-symmetrischen Räumen (siehe

auch [Hel78], S. 519f.). An den Dynkin-Diagrammen der irreduziblen symmetrischen Räume

kann man ablesen (siehe [Loo69], Theorem VII.3.9(a), S. 145 und Tabelle 4 auf S. 119), dass die

folgenden Isomorphien gelten:

Q1 ∼= S2, Q2 ∼= IP1 × IP1, Q3 ∼= Sp(2)/U(2), Q4 ∼= G2(C
4) und Q6 ∼= SO(8)/U(4) .

(Dass es sich nicht nur um lokale Isomorphien handelt, ergibt sich daraus, dass alle genannten

Räume einfach zusammenhängend sind.) Diese Betrachtung liefert jedoch kein Verfahren zur

Konstruktion von Isomorphismen zwischen den jeweiligen Räumen. Es gelingt aber in der Arbeit

(Abschnitt 3.4 und Kapitel 8), auf recht geometrische Weise Konstruktionen der Isomorphismen

anzugeben: Die Segre-Einbettung führt zu einem Isomorphismus zwischen Q2 und IP1×IP1 ; ins-

besondere ist Q2 (im Unterschied zu den komplexen Quadriken anderer Dimension) reduzibel.

— Die Plücker-Einbettung führt zu einem Isomorphismus zwischen der komplexen Graßmann-

Mannigfaltigkeit G2(C
4) und einer 4-dimensionalen komplexen Quadrik Q(∗) ⊂ IP(

∧2C4) ;

hierbei wird die Quadrik Q(∗) durch den Hodge-Operator ∗ :
∧2C4 → ∧2C4 beschrieben.

— Schränkt man den genannten Isomorphismus G2(C
4) → Q(∗) auf einen geeigneten, total-

geodätischen Sp(2)-Orbit in G2(C
4) ein, so erhält man einen Isomorphismus zwischen dem
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Hermitesch-symmetrischen Raum Sp(2)/U(2) und einer 3-dimensionalen, totalgeodätischen

Unterquadrik von Q(∗) . — Mit Hilfe der Theorie der Spingruppen, ihrer Darstellungen und des

Prinzips der Trialität läßt sich zeigen, dass Q6 isomorph zum Hermitesch-symmetrischen Raum

SO(8)/U(4) ist. Der letztere Raum besitzt mehrere geometrische Realisierungen. Beispielsweise

ist er isomorph zu den Zusammenhangskomponenten der Kongruenzfamilie F(IP3, Q6) der 3-

dimensionalen projektiven Unterräume, die in Q6 enthalten sind; diese Tatsache wird auch bei

der Konstruktion des Isomorphismus Q6 → SO(8)/U(4) ausgenutzt. Eine andere geometrische

Realisierung von SO(8)/U(4) ist der Raum der orthogonalen komplexen Strukturen auf IR8 mit

fester Orientierung; mit Hilfe dieser Realisierung kann der Isomorphismus zwischen SO(8)/U(4)

und den Zusammenhangskomponenten von F(IP3, Q6) konstruiert werden.

Es soll gesagt werden, dass wir auf die Existenz der Isomorphie Q4 ∼= G2(C
4) erstmals durch

Prof. M. Guest (Metropolitan University of Tokyo) aufmerksam gemacht wurden. Die Ein-

sichten, die sich bei der Konstruktion dieser Isomorphie ergeben haben, waren auch für das

allgemeine Verständnis komplexer Quadriken sehr fruchtbar.

Die Anhänge enthalten überwiegend reproduktive Darstellungen zu bestimmten Themen, so-

weit sie für die vorliegende Arbeit von Bedeutung sind. Die zugrundeliegenden Quellen sind im

Folgenden und in der Einleitung des jeweiligen Anhangs, ggfs. auch bei einzelnen Sätzen und

Beweisen angegeben.

In Anhang A werden die für die vorliegende Arbeit relevanten Aspekte der Theorie symme-

trischer Räume dargestellt. Bei der in den Abschnitten A.1, A.2 und A.3 dargelegten Be-

trachtungsweise symmetrischer Räume habe ich von einer unveröffentlichten Ausarbeitung von

Prof. H. Reckziegel profitiert; bei der in Abschnitt A.4 dargestellten Wurzelraumtheorie für

symmetrische Räume war mir das Skriptum einer Vorlesung von Prof. G. Thorbergsson von

Nutzen.

Der Gegenstand von Anhang B ist die Theorie der Clifford-Algebren, Spingruppen, ihrer Darstel-

lungen, und des Prinzips der Trialität. Sie spielt bei der Konstruktion der Isomorphie zwischen

Q6 und den Zusammenhangskomponenten von F(IP3, Q6) eine wesentliche Rolle. Hier sind als

Quellen das Buch [LM89] von Lawson/Michelsohn (für Clifford-Algebren, Spingruppen und

ihre Darstellungen) und das Buch [Che54] von Chevalley (für das Prinzip der Trialität) zu

nennen. Außerdem waren mir die Diskussionen mit Prof. H. Reckziegel zu diesen Themen,

aus denen auch die Ausarbeitung [Rec04] entstanden ist, hilfreich.
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